diff --git a/examples/injection_examples/create_your_own_source_model.py b/examples/injection_examples/create_your_own_source_model.py index 98f7787dd9e40b82af16285f44ec9767e2a62415..64b74ded3ec33b7ade097de89daa4150fa0cd8d8 100644 --- a/examples/injection_examples/create_your_own_source_model.py +++ b/examples/injection_examples/create_your_own_source_model.py @@ -24,7 +24,7 @@ def sine_gaussian(f, A, f0, tau, phi0, geocent_time, ra, dec, psi): # We now define some parameters that we will inject and then a waveform generator -injection_parameters = dict(A=1e-21, f0=10, tau=1, phi0=0, geocent_time=0, +injection_parameters = dict(A=1e-23, f0=100, tau=1, phi0=0, geocent_time=0, ra=0, dec=0, psi=0) waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration, sampling_frequency=sampling_frequency, @@ -42,15 +42,14 @@ IFOs = [tupak.detector.get_interferometer_with_fake_noise_and_injection( # Here we define the priors for the search. We use the injection parameters # except for the amplitude, f0, and geocent_time prior = injection_parameters.copy() -prior['A'] = tupak.prior.Uniform(0, 1e-20, 'A') -prior['f0'] = tupak.prior.Uniform(0, 20, 'f') -prior['geocent_time'] = tupak.prior.Uniform(-0.01, 0.01, 'geocent_time') +prior['A'] = tupak.prior.PowerLaw(alpha=-1, minimum=1e-25, maximum=1e-21, name='A') +prior['f0'] = tupak.prior.Uniform(90, 110, 'f') likelihood = tupak.likelihood.GravitationalWaveTransient(IFOs, waveform_generator) result = tupak.sampler.run_sampler( likelihood, prior, sampler='dynesty', outdir=outdir, label=label, - resume=False, sample='unif') + resume=False, sample='unif', injection_parameters=injection_parameters) result.plot_walks() result.plot_distributions() result.plot_corner()