diff --git a/tupak/result.py b/tupak/result.py index d14d37561477bb9d6ce8784f43512d85ab94316f..19aa9a1ea37de044570c5669a2050551a645d957 100644 --- a/tupak/result.py +++ b/tupak/result.py @@ -200,7 +200,7 @@ class Result(dict): data_frame = pd.DataFrame(self.samples, columns=self.search_parameter_keys) self.posterior = data_frame for key in self.fixed_parameter_keys: - self.posterior[key] = self.prior[key].sample(len(self.posterior)) + self.posterior[key] = self.priors[key].sample(len(self.posterior)) def construct_cbc_derived_parameters(self): """ diff --git a/tupak/sampler.py b/tupak/sampler.py index d7bf4dc554bd842dd68ba948892ac95fd45d78a2..7e1bc58db77bca4256fb2c4b0b70385a3f963467 100644 --- a/tupak/sampler.py +++ b/tupak/sampler.py @@ -70,6 +70,7 @@ class Sampler(object): if result is None: self.__result = Result() self.__result.search_parameter_keys = self.__search_parameter_keys + self.__result.fixed_parameter_keys = self.__fixed_parameter_keys self.__result.parameter_labels = [ self.priors[k].latex_label for k in self.__search_parameter_keys] @@ -456,7 +457,6 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir', else: result.log_bayes_factor = result.logz - result.noise_logz result.injection_parameters = injection_parameters - result.fixed_parameter_keys = [key for key in priors if isinstance(key, prior.DeltaFunction)] result.priors = priors result.kwargs = sampler.kwargs result.samples_to_data_frame()