diff --git a/tupak/core/likelihood.py b/tupak/core/likelihood.py index 1582b01a5afe3212fefdcadb646fdbf0e5f94444..0a89b01e82732c0543cf17e8cc5a9aafb7029eca 100644 --- a/tupak/core/likelihood.py +++ b/tupak/core/likelihood.py @@ -199,6 +199,7 @@ class PoissonLikelihood(Analytical1DLikelihood): @property def y(self): + """ Property assures that y-value is a positive integer. """ return self.__y @y.setter @@ -210,10 +211,6 @@ class PoissonLikelihood(Analytical1DLikelihood): raise ValueError("Data must be non-negative integers") self.__y = y - @property - def rate(self): - return self.residual - @property def sum_log_factorial(self): return np.sum(gammaln(self.y + 1)) @@ -253,6 +250,7 @@ class ExponentialLikelihood(Analytical1DLikelihood): @property def y(self): + """ Property assures that y-value is positive. """ return self.__y @y.setter @@ -314,15 +312,17 @@ class StudentTLikelihood(Analytical1DLikelihood): return 1. / self.sigma ** 2 def log_likelihood(self): - # This checks if nu or sigma have been set in parameters. If so, those - # values will be used. Otherwise, the attribute sigma is used. The logic is - # that if nu is not in parameters the attribute is used which was - # given at init (i.e. the known nu as a float). - nu = self.parameters.get('nu', self.nu) - if nu <= 0.: + if self.__get_nu() <= 0.: raise ValueError("Number of degrees of freedom for Student's t-likelihood must be positive") - return self.__summed_log_likelihood(nu) + return self.__summed_log_likelihood(self.__get_nu()) + + def __get_nu(self): + """ This checks if nu or sigma have been set in parameters. If so, those + values will be used. Otherwise, the attribute sigma is used. The logic is + that if nu is not in parameters the attribute is used which was + given at init (i.e. the known nu as a float).""" + return self.parameters.get('nu', self.nu) def __summed_log_likelihood(self, nu): return self.n * (gammaln((nu + 1.0) / 2.0) + .5 * np.log(self.lam / (nu * np.pi)) - gammaln(nu / 2.0)) \