diff --git a/AUTHORS.md b/AUTHORS.md
index afa1592dcb8ad3a95769e962cbf0c0ab63ac9c47..7bf380bd69fde382046bfcc339fef7294cb75e12 100644
--- a/AUTHORS.md
+++ b/AUTHORS.md
@@ -9,6 +9,7 @@ Aditya Vijaykumar
 Andrew Kim
 Andrew Miller
 Antoni Ramos-Buades
+Apratim Ganguly
 Avi Vajpeyi
 Bruce Edelman
 Carl-Johan Haster
@@ -40,6 +41,7 @@ Karl Wette
 Katerina Chatziioannou
 Kaylee de Soto
 Khun Sang Phukon
+Kruthi Krishna
 Kshipraa Athar
 Leslie Wade
 Liting Xiao
diff --git a/bilby/gw/conversion.py b/bilby/gw/conversion.py
index c49a7217bdca5a80cf97325012d9cb291b5545f4..3d207e4833ee7facb3df9ee25791bbc0ebb5e1de 100644
--- a/bilby/gw/conversion.py
+++ b/bilby/gw/conversion.py
@@ -1407,11 +1407,9 @@ def compute_snrs(sample, likelihood, npool=1):
     if likelihood is not None:
         if isinstance(sample, dict):
             likelihood.parameters.update(sample)
-            signal_polarizations =\
-                likelihood.waveform_generator.frequency_domain_strain(sample)
+            signal_polarizations = likelihood.waveform_generator.frequency_domain_strain(sample)
             for ifo in likelihood.interferometers:
-                per_detector_snr = likelihood.calculate_snrs(
-                    signal_polarizations, ifo)
+                per_detector_snr = likelihood.calculate_snrs(signal_polarizations, ifo)
                 sample['{}_matched_filter_snr'.format(ifo.name)] =\
                     per_detector_snr.complex_matched_filter_snr
                 sample['{}_optimal_snr'.format(ifo.name)] = \
diff --git a/bilby/gw/detector/interferometer.py b/bilby/gw/detector/interferometer.py
index 3eea4bcf0dc0a00094f27a506f21d588991c383d..9f8c29147aec9fab09f7a7dc63882588c44fd2e0 100644
--- a/bilby/gw/detector/interferometer.py
+++ b/bilby/gw/detector/interferometer.py
@@ -285,7 +285,7 @@ class Interferometer(object):
         else:
             return 0
 
-    def get_detector_response(self, waveform_polarizations, parameters):
+    def get_detector_response(self, waveform_polarizations, parameters, frequencies=None):
         """ Get the detector response for a particular waveform
 
         Parameters
@@ -294,11 +294,21 @@ class Interferometer(object):
             polarizations of the waveform
         parameters: dict
             parameters describing position and time of arrival of the signal
-
+        frequencies: array-like, optional
+        The frequency values to evaluate the response at. If
+        not provided, the response is computed using
+        :code:`self.frequency_array`. If the frequencies are
+        specified, no frequency masking is performed.
         Returns
         =======
         array_like: A 3x3 array representation of the detector response (signal observed in the interferometer)
         """
+        if frequencies is None:
+            frequencies = self.frequency_array[self.frequency_mask]
+            mask = self.frequency_mask
+        else:
+            mask = np.ones(len(frequencies), dtype=bool)
+
         signal = {}
         for mode in waveform_polarizations.keys():
             det_response = self.antenna_response(
@@ -308,9 +318,7 @@ class Interferometer(object):
                 parameters['psi'], mode)
 
             signal[mode] = waveform_polarizations[mode] * det_response
-        signal_ifo = sum(signal.values())
-
-        signal_ifo *= self.strain_data.frequency_mask
+        signal_ifo = sum(signal.values()) * mask
 
         time_shift = self.time_delay_from_geocenter(
             parameters['ra'], parameters['dec'], parameters['geocent_time'])
@@ -320,12 +328,11 @@ class Interferometer(object):
         dt_geocent = parameters['geocent_time'] - self.strain_data.start_time
         dt = dt_geocent + time_shift
 
-        signal_ifo[self.strain_data.frequency_mask] = signal_ifo[self.strain_data.frequency_mask] * np.exp(
-            -1j * 2 * np.pi * dt * self.strain_data.frequency_array[self.strain_data.frequency_mask])
+        signal_ifo[mask] = signal_ifo[mask] * np.exp(-1j * 2 * np.pi * dt * frequencies)
 
-        signal_ifo[self.strain_data.frequency_mask] *= self.calibration_model.get_calibration_factor(
-            self.strain_data.frequency_array[self.strain_data.frequency_mask],
-            prefix='recalib_{}_'.format(self.name), **parameters)
+        signal_ifo[mask] *= self.calibration_model.get_calibration_factor(
+            frequencies, prefix='recalib_{}_'.format(self.name), **parameters
+        )
 
         return signal_ifo
 
diff --git a/bilby/gw/likelihood/__init__.py b/bilby/gw/likelihood/__init__.py
index 88fb527ad579513e39c4cda69e0d20a9c1d38e84..d752f77a915a54000d6a65e6e66b3b027828665f 100644
--- a/bilby/gw/likelihood/__init__.py
+++ b/bilby/gw/likelihood/__init__.py
@@ -2,6 +2,7 @@ from .base import GravitationalWaveTransient
 from .basic import BasicGravitationalWaveTransient
 from .roq import BilbyROQParamsRangeError, ROQGravitationalWaveTransient
 from .multiband import MBGravitationalWaveTransient
+from .relative import RelativeBinningGravitationalWaveTransient
 
 from ..source import lal_binary_black_hole
 from ..waveform_generator import WaveformGenerator
diff --git a/bilby/gw/likelihood/base.py b/bilby/gw/likelihood/base.py
index 985fd94b6e925c322b00e8e33e0f4365739555d5..53621643b6d68b1fef504f0ff89b56b92ac74a4c 100644
--- a/bilby/gw/likelihood/base.py
+++ b/bilby/gw/likelihood/base.py
@@ -265,8 +265,10 @@ class GravitationalWaveTransient(Likelihood):
             The bilby interferometer object
 
         """
-        signal = interferometer.get_detector_response(
-            waveform_polarizations, self.parameters)
+        signal = self._compute_full_waveform(
+            signal_polarizations=waveform_polarizations,
+            interferometer=interferometer,
+        )
         _mask = interferometer.frequency_mask
 
         if 'recalib_index' in self.parameters:
@@ -614,8 +616,10 @@ class GravitationalWaveTransient(Likelihood):
         for ifo in self.interferometers:
             ifo_length = len(ifo.frequency_domain_strain)
             mask = ifo.frequency_mask
-            signal = ifo.get_detector_response(
-                signal_polarizations, self.parameters)
+            signal = self._compute_full_waveform(
+                signal_polarizations=signal_polarizations,
+                interferometer=ifo,
+            )
             signal_long[:ifo_length] = signal
             data[:ifo_length] = np.conj(ifo.frequency_domain_strain)
             psd[:ifo_length][mask] = ifo.power_spectral_density_array[mask]
@@ -703,6 +707,23 @@ class GravitationalWaveTransient(Likelihood):
             h_inner_h += per_detector_snr.optimal_snr_squared
         return d_inner_h, h_inner_h
 
+    def _compute_full_waveform(self, signal_polarizations, interferometer):
+        """
+        Project the waveform polarizations against the interferometer
+        response. This is useful for likelihood classes that don't
+        use the full frequency array, e.g., the relative binning
+        likelihood.
+
+        Parameters
+        ==========
+        signal_polarizations: dict
+            Dictionary containing the waveform evaluated at
+            :code:`interferometer.frequency_array`.
+        interferometer: bilby.gw.detector.Interferometer
+            Interferometer to compute the response with respect to.
+        """
+        return interferometer.get_detector_response(signal_polarizations, self.parameters)
+
     def generate_phase_sample_from_marginalized_likelihood(
             self, signal_polarizations=None):
         r"""
diff --git a/bilby/gw/likelihood/relative.py b/bilby/gw/likelihood/relative.py
new file mode 100644
index 0000000000000000000000000000000000000000..ddb4d3ee872b3f2c43efb181f4b3fdaba4b3db08
--- /dev/null
+++ b/bilby/gw/likelihood/relative.py
@@ -0,0 +1,395 @@
+import numpy as np
+from scipy.optimize import differential_evolution
+
+from .base import GravitationalWaveTransient
+from ...core.utils import logger
+from ...core.prior.base import Constraint
+from ...core.prior import DeltaFunction
+from ..utils import noise_weighted_inner_product
+
+
+class RelativeBinningGravitationalWaveTransient(GravitationalWaveTransient):
+    """A gravitational-wave transient likelihood object which uses the relative
+    binning procedure to calculate a fast likelihood. See Zackay et al.
+    arXiv1806.08792
+
+    Parameters
+    ----------
+    interferometers: list, bilby.gw.detector.InterferometerList
+        A list of `bilby.detector.Interferometer` instances - contains the
+        detector data and power spectral densities
+    waveform_generator: `bilby.waveform_generator.WaveformGenerator`
+        An object which computes the frequency-domain strain of the signal,
+        given some set of parameters
+    fiducial_parameters: dict, optional
+        A starting guess for initial parameters of the event for finding the
+        maximum likelihood (fiducial) waveform.
+    parameter_bounds: dict, optional
+        Dictionary of bounds (lists) for the initial parameters when finding
+        the initial maximum likelihood (fiducial) waveform.
+    distance_marginalization: bool, optional
+        If true, marginalize over distance in the likelihood.
+        This uses a look up table calculated at run time.
+        The distance prior is set to be a delta function at the minimum
+        distance allowed in the prior being marginalised over.
+    time_marginalization: bool, optional
+        If true, marginalize over time in the likelihood.
+        This uses a FFT to calculate the likelihood over a regularly spaced
+        grid.
+        In order to cover the whole space the prior is set to be uniform over
+        the spacing of the array of times.
+        If using time marginalisation and jitter_time is True a "jitter"
+        parameter is added to the prior which modifies the position of the
+        grid of times.
+    phase_marginalization: bool, optional
+        If true, marginalize over phase in the likelihood.
+        This is done analytically using a Bessel function.
+        The phase prior is set to be a delta function at phase=0.
+    priors: dict, optional
+        If given, used in the distance and phase marginalization.
+    distance_marginalization_lookup_table: (dict, str), optional
+        If a dict, dictionary containing the lookup_table, distance_array,
+        (distance) prior_array, and reference_distance used to construct
+        the table.
+        If a string the name of a file containing these quantities.
+        The lookup table is stored after construction in either the
+        provided string or a default location:
+        '.distance_marginalization_lookup_dmin{}_dmax{}_n{}.npz'
+    jitter_time: bool, optional
+        Whether to introduce a `time_jitter` parameter. This avoids either
+        missing the likelihood peak, or introducing biases in the
+        reconstructed time posterior due to an insufficient sampling frequency.
+        Default is False, however using this parameter is strongly encouraged.
+    reference_frame: (str, bilby.gw.detector.InterferometerList, list), optional
+        Definition of the reference frame for the sky location.
+        - "sky": sample in RA/dec, this is the default
+        - e.g., "H1L1", ["H1", "L1"], InterferometerList(["H1", "L1"]):
+          sample in azimuth and zenith, `azimuth` and `zenith` defined in the
+          frame where the z-axis is aligned the the vector connecting H1
+          and L1.
+    time_reference: str, optional
+        Name of the reference for the sampled time parameter.
+        - "geocent"/"geocenter": sample in the time at the Earth's center,
+          this is the default
+        - e.g., "H1": sample in the time of arrival at H1
+    chi: float, optional
+        Tunable parameter which limits the perturbation of alpha when setting
+        up the bin range. See https://arxiv.org/abs/1806.08792.
+    epsilon: float, optional
+        Tunable parameter which limits the differential phase change in each
+        bin when setting up the bin range. See https://arxiv.org/abs/1806.08792.
+
+    Returns
+    -------
+    Likelihood: `bilby.core.likelihood.Likelihood`
+        A likelihood object, able to compute the likelihood of the data given
+        some model parameters.
+
+    Notes
+    -----
+    The relative binning likelihood does not currently support calibration marginalization.
+    """
+
+    def __init__(self, interferometers,
+                 waveform_generator,
+                 fiducial_parameters=None,
+                 parameter_bounds=None,
+                 maximization_kwargs=None,
+                 update_fiducial_parameters=False,
+                 distance_marginalization=False,
+                 time_marginalization=False,
+                 phase_marginalization=False,
+                 priors=None,
+                 distance_marginalization_lookup_table=None,
+                 jitter_time=True,
+                 reference_frame="sky",
+                 time_reference="geocenter",
+                 chi=1,
+                 epsilon=0.5):
+
+        super(RelativeBinningGravitationalWaveTransient, self).__init__(
+            interferometers=interferometers,
+            waveform_generator=waveform_generator,
+            distance_marginalization=distance_marginalization,
+            phase_marginalization=phase_marginalization,
+            time_marginalization=time_marginalization,
+            priors=priors,
+            distance_marginalization_lookup_table=distance_marginalization_lookup_table,
+            jitter_time=jitter_time,
+            reference_frame=reference_frame,
+            time_reference=time_reference)
+
+        if fiducial_parameters is None:
+            logger.info("Drawing fiducial parameters from prior.")
+            fiducial_parameters = priors.sample()
+        fiducial_parameters["fiducial"] = 0
+        if self.time_marginalization:
+            fiducial_parameters["geocent_time"] = interferometers.start_time
+        if self.distance_marginalization:
+            fiducial_parameters["luminosity_distance"] = self._ref_dist
+        if self.phase_marginalization:
+            fiducial_parameters["phase"] = 0.0
+        self.fiducial_parameters = fiducial_parameters
+        self.chi = chi
+        self.epsilon = epsilon
+        self.gamma = np.array([-5 / 3, -2 / 3, 1, 5 / 3, 7 / 3])
+        self.maximum_frequency = waveform_generator.frequency_array[-1]
+        self.fiducial_waveform_obtained = False
+        self.check_if_bins_are_setup = False
+        self.fiducial_polarizations = None
+        self.per_detector_fiducial_waveforms = dict()
+        self.per_detector_fiducial_waveform_points = dict()
+        self.bin_freqs = dict()
+        self.bin_inds = dict()
+        self.bin_widths = dict()
+        self.bin_centers = dict()
+        self.set_fiducial_waveforms(self.fiducial_parameters)
+        logger.info("Initial fiducial waveforms set up")
+        self.setup_bins()
+        self.compute_summary_data()
+        logger.info("Summary Data Obtained")
+
+        if update_fiducial_parameters:
+            # write a check to make sure prior is not None
+            logger.info("Using scipy optimization to find maximum likelihood parameters.")
+            self.parameters_to_be_updated = [key for key in priors if not isinstance(
+                priors[key], (DeltaFunction, Constraint, float, int))]
+            logger.info(f"Parameters over which likelihood is maximized: {self.parameters_to_be_updated}")
+            if parameter_bounds is None:
+                logger.info("No parameter bounds were given. Using priors instead.")
+                self.parameter_bounds = self.get_bounds_from_priors(priors)
+            else:
+                self.parameter_bounds = self.get_parameter_list_from_dictionary(parameter_bounds)
+            self.fiducial_parameters = self.find_maximum_likelihood_parameters(
+                self.parameter_bounds, maximization_kwargs=maximization_kwargs)
+        self.parameters.update(self.fiducial_parameters)
+        logger.info(f"Fiducial likelihood: {self.log_likelihood_ratio():.2f}")
+
+    def __repr__(self):
+        return self.__class__.__name__ + '(interferometers={},\n\twaveform_generator={},\n\fiducial_parameters={},' \
+            .format(self.interferometers, self.waveform_generator, self.fiducial_parameters)
+
+    def setup_bins(self):
+        frequency_array = self.waveform_generator.frequency_array
+        gamma = self.gamma[:, np.newaxis]
+        maximum_frequency = frequency_array[0]
+        minimum_frequency = frequency_array[-1]
+        for interferometer in self.interferometers:
+            maximum_frequency = max(maximum_frequency, interferometer.maximum_frequency)
+            minimum_frequency = min(minimum_frequency, interferometer.minimum_frequency)
+        maximum_frequency = min(maximum_frequency, self.maximum_frequency)
+        frequency_array_useful = frequency_array[
+            (frequency_array >= minimum_frequency)
+            & (frequency_array <= maximum_frequency)
+        ]
+
+        d_alpha = self.chi * 2 * np.pi / np.abs(
+            (minimum_frequency ** gamma) * np.heaviside(-gamma, 1)
+            - (maximum_frequency ** gamma) * np.heaviside(gamma, 1)
+        )
+        d_phi = np.sum(
+            np.sign(gamma) * d_alpha * frequency_array_useful ** gamma,
+            axis=0
+        )
+        d_phi_from_start = d_phi - d_phi[0]
+        self.number_of_bins = int(d_phi_from_start[-1] // self.epsilon)
+        self.bin_freqs = np.zeros(self.number_of_bins + 1)
+        self.bin_inds = np.zeros(self.number_of_bins + 1, dtype=int)
+
+        for i in range(self.number_of_bins + 1):
+            bin_index = np.where(d_phi_from_start >= ((i / self.number_of_bins) * d_phi_from_start[-1]))[0][0]
+            bin_freq = frequency_array_useful[bin_index]
+            self.bin_freqs[i] = bin_freq
+            self.bin_inds[i] = np.where(frequency_array >= bin_freq)[0][0]
+
+        logger.debug(
+            f"Set up {self.number_of_bins} bins "
+            f"between {minimum_frequency} Hz and {maximum_frequency} Hz"
+        )
+        self.waveform_generator.waveform_arguments["frequency_bin_edges"] = self.bin_freqs
+        self.bin_widths = self.bin_freqs[1:] - self.bin_freqs[:-1]
+        self.bin_centers = (self.bin_freqs[1:] + self.bin_freqs[:-1]) / 2
+        for interferometer in self.interferometers:
+            name = interferometer.name
+            self.per_detector_fiducial_waveform_points[name] = (
+                self.per_detector_fiducial_waveforms[name][self.bin_inds]
+            )
+
+    def set_fiducial_waveforms(self, parameters):
+        _fiducial = parameters["fiducial"]
+        parameters["fiducial"] = 1
+        self.fiducial_polarizations = self.waveform_generator.frequency_domain_strain(
+            parameters)
+
+        maximum_nonzero_index = np.where(self.fiducial_polarizations["plus"] != 0j)[0][-1]
+        logger.debug(f"Maximum Nonzero Index is {maximum_nonzero_index}")
+        maximum_nonzero_frequency = self.waveform_generator.frequency_array[maximum_nonzero_index]
+        logger.debug(f"Maximum Nonzero Frequency is {maximum_nonzero_frequency}")
+        self.maximum_frequency = maximum_nonzero_frequency
+
+        if self.fiducial_polarizations is None:
+            raise ValueError(f"Cannot compute fiducial waveforms for {parameters}")
+
+        for interferometer in self.interferometers:
+            logger.debug(f"Maximum Frequency is {interferometer.maximum_frequency}")
+            wf = interferometer.get_detector_response(self.fiducial_polarizations, parameters)
+            wf[interferometer.frequency_array > self.maximum_frequency] = 0
+            self.per_detector_fiducial_waveforms[interferometer.name] = wf
+
+        parameters["fiducial"] = _fiducial
+
+    def find_maximum_likelihood_parameters(self, parameter_bounds,
+                                           iterations=5, maximization_kwargs=None):
+        if maximization_kwargs is None:
+            maximization_kwargs = dict()
+        self.parameters.update(self.fiducial_parameters)
+        self.parameters["fiducial"] = 0
+        updated_parameters_list = self.get_parameter_list_from_dictionary(self.fiducial_parameters)
+        old_fiducial_ln_likelihood = self.log_likelihood_ratio()
+        logger.info(f"Fiducial ln likelihood ratio: {old_fiducial_ln_likelihood:.2f}")
+        for it in range(iterations):
+            logger.info(f"Optimizing fiducial parameters. Iteration : {it + 1}")
+            output = differential_evolution(
+                self.lnlike_scipy_maximize,
+                bounds=parameter_bounds,
+                x0=updated_parameters_list,
+                **maximization_kwargs,
+            )
+            updated_parameters_list = output['x']
+            updated_parameters = self.get_parameter_dictionary_from_list(updated_parameters_list)
+            self.parameters.update(updated_parameters)
+            self.set_fiducial_waveforms(updated_parameters)
+            self.setup_bins()
+            self.compute_summary_data()
+            new_fiducial_ln_likelihood = self.log_likelihood_ratio()
+            logger.info(f"Fiducial ln likelihood ratio: {new_fiducial_ln_likelihood:.2f}")
+            if new_fiducial_ln_likelihood - old_fiducial_ln_likelihood < 0.1:
+                break
+            old_fiducial_ln_likelihood = new_fiducial_ln_likelihood
+
+        logger.info("Fiducial waveforms updated")
+        logger.info("Summary Data updated")
+        return updated_parameters
+
+    def lnlike_scipy_maximize(self, parameter_list):
+        self.parameters.update(self.get_parameter_dictionary_from_list(parameter_list))
+        return -self.log_likelihood_ratio()
+
+    def get_parameter_dictionary_from_list(self, parameter_list):
+        parameter_dictionary = dict(zip(self.parameters_to_be_updated, parameter_list))
+        excluded_parameter_keys = set(self.fiducial_parameters) - set(self.parameters_to_be_updated)
+        for key in excluded_parameter_keys:
+            parameter_dictionary[key] = self.fiducial_parameters[key]
+        return parameter_dictionary
+
+    def get_parameter_list_from_dictionary(self, parameter_dict):
+        return [parameter_dict[k] for k in self.parameters_to_be_updated]
+
+    def get_bounds_from_priors(self, priors):
+        bounds = []
+        for key in self.parameters_to_be_updated:
+            bounds.append([priors[key].minimum, priors[key].maximum])
+        return bounds
+
+    def compute_summary_data(self):
+        summary_data = dict()
+
+        for interferometer in self.interferometers:
+            mask = interferometer.frequency_mask
+            masked_frequency_array = interferometer.frequency_array[mask]
+            masked_bin_inds = []
+            for edge in self.bin_freqs:
+                index = np.where(masked_frequency_array == edge)[0][0]
+                masked_bin_inds.append(index)
+            masked_strain = interferometer.frequency_domain_strain[mask]
+            masked_h0 = self.per_detector_fiducial_waveforms[interferometer.name][mask]
+            masked_psd = interferometer.power_spectral_density_array[mask]
+            duration = interferometer.duration
+            a0, b0, a1, b1 = np.zeros((4, self.number_of_bins), dtype=complex)
+
+            for i in range(self.number_of_bins):
+                start_idx = masked_bin_inds[i]
+                end_idx = masked_bin_inds[i + 1]
+                start = masked_frequency_array[start_idx]
+                stop = masked_frequency_array[end_idx]
+                idxs = slice(start_idx, end_idx)
+
+                strain = masked_strain[idxs]
+                h0 = masked_h0[idxs]
+                psd = masked_psd[idxs]
+
+                frequencies = masked_frequency_array[idxs]
+                central_frequency = (start + stop) / 2
+                delta_frequency = frequencies - central_frequency
+
+                a0[i] = noise_weighted_inner_product(h0, strain, psd, duration)
+                b0[i] = noise_weighted_inner_product(h0, h0, psd, duration)
+                a1[i] = noise_weighted_inner_product(h0, strain * delta_frequency, psd, duration)
+                b1[i] = noise_weighted_inner_product(h0, h0 * delta_frequency, psd, duration)
+
+            summary_data[interferometer.name] = (a0, a1, b0, b1)
+
+        self.summary_data = summary_data
+
+    def compute_waveform_ratio_per_interferometer(self, waveform_polarizations, interferometer):
+        name = interferometer.name
+        strain = interferometer.get_detector_response(
+            waveform_polarizations=waveform_polarizations,
+            parameters=self.parameters,
+            frequencies=self.bin_freqs,
+        )
+        reference_strain = self.per_detector_fiducial_waveform_points[name]
+        waveform_ratio = strain / reference_strain
+
+        r0 = (waveform_ratio[1:] + waveform_ratio[:-1]) / 2
+        r1 = (waveform_ratio[1:] - waveform_ratio[:-1]) / self.bin_widths
+
+        return [r0, r1]
+
+    def _compute_full_waveform(self, signal_polarizations, interferometer):
+        fiducial_waveform = self.per_detector_fiducial_waveforms[interferometer.name]
+        r0, r1 = self.compute_waveform_ratio_per_interferometer(
+            waveform_polarizations=signal_polarizations,
+            interferometer=interferometer,
+        )
+        f = interferometer.frequency_array
+        duplicated_r0, duplicated_r1, duplicated_fm = np.zeros((3, f.shape[0]), dtype=complex)
+
+        for i in range(self.number_of_bins):
+            idxs = slice(self.bin_inds[i], self.bin_inds[i + 1])
+            duplicated_fm[idxs] = self.bin_centers[i]
+            duplicated_r0[idxs] = r0[i]
+            duplicated_r1[idxs] = r1[i]
+
+        full_waveform_ratio = duplicated_r0 + duplicated_r1 * (f - duplicated_fm)
+        return fiducial_waveform * full_waveform_ratio
+
+    def calculate_snrs(self, waveform_polarizations, interferometer):
+        r0, r1 = self.compute_waveform_ratio_per_interferometer(
+            waveform_polarizations=waveform_polarizations,
+            interferometer=interferometer,
+        )
+        a0, a1, b0, b1 = self.summary_data[interferometer.name]
+        d_inner_h = np.sum(a0 * np.conjugate(r0) + a1 * np.conjugate(r1))
+        h_inner_h = np.sum(b0 * np.abs(r0) ** 2 + 2 * b1 * np.real(r0 * np.conjugate(r1)))
+        optimal_snr_squared = h_inner_h
+        complex_matched_filter_snr = d_inner_h / (optimal_snr_squared ** 0.5)
+
+        if self.time_marginalization:
+            full_waveform = self._compute_full_waveform(
+                signal_polarizations=waveform_polarizations,
+                interferometer=interferometer,
+            )
+            d_inner_h_array = 4 / self.waveform_generator.duration * np.fft.fft(
+                full_waveform[0:-1]
+                * interferometer.frequency_domain_strain.conjugate()[0:-1]
+                / interferometer.power_spectral_density_array[0:-1])
+
+        else:
+            d_inner_h_array = None
+
+        return self._CalculatedSNRs(
+            d_inner_h=d_inner_h, optimal_snr_squared=optimal_snr_squared,
+            complex_matched_filter_snr=complex_matched_filter_snr,
+            d_inner_h_array=d_inner_h_array, optimal_snr_squared_array=None,
+            d_inner_h_squared_tc_array=None)
diff --git a/bilby/gw/source.py b/bilby/gw/source.py
index 4d7793b92fe8124e6e0c3f4397df1bfacc3ca91d..e13abb9e21935f7637f26bef261d96731bec982f 100644
--- a/bilby/gw/source.py
+++ b/bilby/gw/source.py
@@ -444,6 +444,78 @@ def binary_neutron_star_roq(
         phi_12=phi_12, lambda_1=lambda_1, lambda_2=lambda_2, **waveform_kwargs)
 
 
+def lal_binary_black_hole_relative_binning(
+        frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1,
+        phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, fiducial, **kwargs):
+    """ Source model to go with RelativeBinningGravitationalWaveTransient likelihood.
+
+    All parameters are the same as in the usual source models, except `fiducial`
+
+    fiducial: float
+        If fiducial=1, waveform evaluated on the full frequency grid is returned.
+        If fiducial=0, waveform evaluated at waveform_kwargs["frequency_bin_edges"]
+        is returned.
+    """
+
+    waveform_kwargs = dict(
+        waveform_approximant='IMRPhenomPv2', reference_frequency=50.0,
+        minimum_frequency=20.0, maximum_frequency=frequency_array[-1],
+        catch_waveform_errors=False, pn_spin_order=-1, pn_tidal_order=-1,
+        pn_phase_order=-1, pn_amplitude_order=0)
+    waveform_kwargs.update(kwargs)
+
+    if fiducial == 1:
+        return _base_lal_cbc_fd_waveform(
+            frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2,
+            luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase,
+            a_1=a_1, a_2=a_2, tilt_1=tilt_1, tilt_2=tilt_2, phi_jl=phi_jl,
+            phi_12=phi_12, lambda_1=0.0, lambda_2=0.0, **waveform_kwargs)
+
+    else:
+        waveform_kwargs["frequencies"] = waveform_kwargs.pop("frequency_bin_edges")
+        return _base_waveform_frequency_sequence(
+            frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2,
+            luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase,
+            a_1=a_1, a_2=a_2, tilt_1=tilt_1, tilt_2=tilt_2, phi_jl=phi_jl,
+            phi_12=phi_12, lambda_1=0.0, lambda_2=0.0, **waveform_kwargs)
+
+
+def lal_binary_neutron_star_relative_binning(
+        frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1,
+        phi_12, a_2, tilt_2, phi_jl, lambda_1, lambda_2, theta_jn, phase,
+        fiducial, **kwargs):
+    """ Source model to go with RelativeBinningGravitationalWaveTransient likelihood.
+
+    All parameters are the same as in the usual source models, except `fiducial`
+
+    fiducial: float
+        If fiducial=1, waveform evaluated on the full frequency grid is returned.
+        If fiducial=0, waveform evaluated at waveform_kwargs["frequency_bin_edges"]
+        is returned.
+    """
+
+    waveform_kwargs = dict(
+        waveform_approximant='IMRPhenomPv2_NRTidal', reference_frequency=50.0,
+        minimum_frequency=20.0, maximum_frequency=frequency_array[-1],
+        catch_waveform_errors=False, pn_spin_order=-1, pn_tidal_order=-1,
+        pn_phase_order=-1, pn_amplitude_order=0)
+    waveform_kwargs.update(kwargs)
+
+    if fiducial == 1:
+        return _base_lal_cbc_fd_waveform(
+            frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2,
+            luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase,
+            a_1=a_1, a_2=a_2, tilt_1=tilt_1, tilt_2=tilt_2, phi_12=phi_12,
+            phi_jl=phi_jl, lambda_1=lambda_1, lambda_2=lambda_2, **waveform_kwargs)
+    else:
+        waveform_kwargs["frequencies"] = waveform_kwargs.pop("frequency_bin_edges")
+        return _base_waveform_frequency_sequence(
+            frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2,
+            luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase,
+            a_1=a_1, a_2=a_2, tilt_1=tilt_1, tilt_2=tilt_2, phi_jl=phi_jl,
+            phi_12=phi_12, lambda_1=lambda_1, lambda_2=lambda_2, **waveform_kwargs)
+
+
 def _base_roq_waveform(
         frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1,
         phi_12, a_2, tilt_2, lambda_1, lambda_2, phi_jl, theta_jn, phase,
diff --git a/examples/gw_examples/data_examples/GW190425.py b/examples/gw_examples/data_examples/GW190425.py
index b575a4ed88842cae9f0b4683878e310e8197e654..8d9fb02af9e3de6e32b56f5c50fd0eeaa73d0809 100644
--- a/examples/gw_examples/data_examples/GW190425.py
+++ b/examples/gw_examples/data_examples/GW190425.py
@@ -1,11 +1,11 @@
 #!/usr/bin/env python
 """
-Tutorial to demonstrate running parameter estimation on GW190425
+Tutorial to demonstrate running parameter estimation on GW190425.
 
 This example estimates all 17 parameters of the binary neutron star system using
-commonly used prior distributions. This will take several hours to run. The
-data is obtained using gwpy, see [1] for information on how to access data on
-the LIGO Data Grid instead.
+commonly used prior distributions. We shall use the relative binning likelihood.
+This will take around an hour to run. The data is obtained using gwpy,
+see [1] for information on how to access data on the LIGO Data Grid instead.
 
 [1] https://gwpy.github.io/docs/stable/timeseries/remote-access.html
 """
@@ -16,7 +16,7 @@ logger = bilby.core.utils.logger
 outdir = "outdir"
 label = "GW190425"
 
-# Note you can get trigger times using the gwosc package, e.g.:
+# Note you can get trigger times using the gwosc package, e.g.
 # > from gwosc import datasets
 # > datasets.event_gps("GW190425")
 trigger_time = 1240215503.0
@@ -29,6 +29,29 @@ post_trigger_duration = 2  # Time between trigger time and end of segment
 end_time = trigger_time + post_trigger_duration
 start_time = end_time - duration
 
+# The fiducial parameters are taken to me the max likelihood sample from the
+# posterior sample release of LIGO-Virgo
+# https://www.gw-openscience.org/eventapi/html/O3_Discovery_Papers/GW190425/
+
+fiducial_parameters = {
+    "a_1": 0.018,
+    "a_2": 0.016,
+    "chirp_mass": 1.48658,
+    "dec": 0.438,
+    "geocent_time": 1240215503.039,
+    "lambda_1": 446.941,
+    "lambda_2": 43.386,
+    "luminosity_distance": 206.751,
+    "mass_ratio": 0.8955,
+    "phase": 3.0136566567608765,
+    "phi_12": 4.319,
+    "phi_jl": 5.07,
+    "psi": 0.281,
+    "ra": 4.2,
+    "theta_jn": 0.185,
+    "tilt_1": 0.879,
+    "tilt_2": 0.514,
+}
 psd_duration = 1024
 psd_start_time = start_time - psd_duration
 psd_end_time = start_time
@@ -64,6 +87,7 @@ ifo_list.plot_data(outdir=outdir, label=label)
 # You can overwrite this using the syntax below in the file,
 # or choose a fixed value by just providing a float value as the prior.
 priors = bilby.gw.prior.BBHPriorDict(filename="GW190425.prior")
+priors["fiducial"] = 0
 
 # Add the geocent time prior
 priors["geocent_time"] = bilby.core.prior.Uniform(
@@ -76,7 +100,7 @@ priors["geocent_time"] = bilby.core.prior.Uniform(
 # the waveform approximant and reference frequency and a parameter conversion
 # which allows us to sample in chirp mass and ratio rather than component mass
 waveform_generator = bilby.gw.WaveformGenerator(
-    frequency_domain_source_model=bilby.gw.source.lal_binary_neutron_star,
+    frequency_domain_source_model=bilby.gw.source.lal_binary_neutron_star_relative_binning,
     parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_neutron_star_parameters,
     waveform_arguments={
         "waveform_approximant": "IMRPhenomPv2_NRTidalv2",
@@ -87,13 +111,14 @@ waveform_generator = bilby.gw.WaveformGenerator(
 # In this step, we define the likelihood. Here we use the standard likelihood
 # function, passing it the data and the waveform generator.
 # Note, phase_marginalization is formally invalid with a precessing waveform such as IMRPhenomPv2
-likelihood = bilby.gw.likelihood.GravitationalWaveTransient(
+likelihood = bilby.gw.likelihood.RelativeBinningGravitationalWaveTransient(
     ifo_list,
     waveform_generator,
     priors=priors,
-    time_marginalization=True,
-    phase_marginalization=False,
+    time_marginalization=False,
+    phase_marginalization=True,
     distance_marginalization=True,
+    fiducial_parameters=fiducial_parameters,
 )
 
 # Finally, we run the sampler. This function takes the likelihood and prior
@@ -108,6 +133,6 @@ result = bilby.run_sampler(
     check_point_delta_t=600,
     check_point_plot=True,
     npool=1,
-    conversion_function=bilby.gw.conversion.generate_all_bbh_parameters,
+    conversion_function=bilby.gw.conversion.generate_all_bns_parameters,
 )
 result.plot_corner()
diff --git a/examples/gw_examples/injection_examples/relative_binning.py b/examples/gw_examples/injection_examples/relative_binning.py
new file mode 100644
index 0000000000000000000000000000000000000000..5a848f003b0a88262d0380272c85b624ef306111
--- /dev/null
+++ b/examples/gw_examples/injection_examples/relative_binning.py
@@ -0,0 +1,162 @@
+#!/usr/bin/env python
+"""
+Tutorial to demonstrate running parameter estimation on a reduced parameter
+space for an injected signal, using the relative binning likelihood.
+
+This example estimates the masses using a uniform prior in both component masses
+and distance using a uniform in comoving volume prior on luminosity distance
+between luminosity distances of 100Mpc and 5Gpc, the cosmology is Planck15.
+"""
+
+import bilby
+import numpy as np
+from tqdm.auto import trange
+
+# Set the duration and sampling frequency of the data segment that we're
+# going to inject the signal into
+duration = 4.0
+sampling_frequency = 2048.0
+minimum_frequency = 20
+
+# Specify the output directory and the name of the simulation.
+outdir = "outdir"
+label = "relative"
+bilby.core.utils.setup_logger(outdir=outdir, label=label)
+
+# Set up a random seed for result reproducibility.  This is optional!
+np.random.seed(88170235)
+
+# We are going to inject a binary black hole waveform.  We first establish a
+# dictionary of parameters that includes all of the different waveform
+# parameters, including masses of the two black holes (mass_1, mass_2),
+# spins of both black holes (a, tilt, phi), etc.
+injection_parameters = dict(
+    mass_1=36.0,
+    mass_2=29.0,
+    a_1=0.4,
+    a_2=0.3,
+    tilt_1=0.5,
+    tilt_2=1.0,
+    phi_12=1.7,
+    phi_jl=0.3,
+    luminosity_distance=2000.0,
+    theta_jn=0.4,
+    psi=2.659,
+    phase=1.3,
+    geocent_time=1126259642.413,
+    ra=1.375,
+    dec=-1.2108,
+    fiducial=1,
+)
+
+# Fixed arguments passed into the source model
+waveform_arguments = dict(
+    waveform_approximant="IMRPhenomXP",
+    reference_frequency=50.0,
+    minimum_frequency=minimum_frequency,
+)
+
+# Create the waveform_generator using a LAL BinaryBlackHole source function
+waveform_generator = bilby.gw.WaveformGenerator(
+    duration=duration,
+    sampling_frequency=sampling_frequency,
+    # frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,
+    frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole_relative_binning,
+    parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters,
+    waveform_arguments=waveform_arguments,
+)
+
+# Set up interferometers.  In this case we'll use two interferometers
+# (LIGO-Hanford (H1), LIGO-Livingston (L1). These default to their design
+# sensitivity
+ifos = bilby.gw.detector.InterferometerList(["H1", "L1"])
+ifos.set_strain_data_from_power_spectral_densities(
+    sampling_frequency=sampling_frequency,
+    duration=duration,
+    start_time=injection_parameters["geocent_time"] - 2,
+)
+ifos.inject_signal(
+    waveform_generator=waveform_generator, parameters=injection_parameters
+)
+
+# Set up a PriorDict, which inherits from dict.
+# By default we will sample all terms in the signal models.  However, this will
+# take a long time for the calculation, so for this example we will set almost
+# all of the priors to be equall to their injected values.  This implies the
+# prior is a delta function at the true, injected value.  In reality, the
+# sampler implementation is smart enough to not sample any parameter that has
+# a delta-function prior.
+# The above list does *not* include mass_1, mass_2, theta_jn and luminosity
+# distance, which means those are the parameters that will be included in the
+# sampler.  If we do nothing, then the default priors get used.
+priors = bilby.gw.prior.BBHPriorDict()
+for key in [
+    "a_1",
+    "a_2",
+    "tilt_1",
+    "tilt_2",
+    "phi_12",
+    "phi_jl",
+    "psi",
+    "ra",
+    "dec",
+    "geocent_time",
+    "phase",
+]:
+    priors[key] = injection_parameters[key]
+priors["fiducial"] = 0
+
+# Perform a check that the prior does not extend to a parameter space longer than the data
+priors.validate_prior(duration, minimum_frequency)
+
+# Initialise the likelihood by passing in the interferometer data (ifos) and
+# the waveform generator
+likelihood = bilby.gw.likelihood.RelativeBinningGravitationalWaveTransient(
+    interferometers=ifos,
+    waveform_generator=waveform_generator,
+    priors=priors,
+    distance_marginalization=True,
+    fiducial_parameters=injection_parameters,
+)
+
+# Run sampler.  In this case we're going to use the `dynesty` sampler
+result = bilby.run_sampler(
+    likelihood=likelihood,
+    priors=priors,
+    sampler="nestle",
+    npoints=100,
+    injection_parameters=injection_parameters,
+    outdir=outdir,
+    label=label,
+    conversion_function=bilby.gw.conversion.generate_all_bbh_parameters,
+)
+
+alt_waveform_generator = bilby.gw.WaveformGenerator(
+    duration=duration,
+    sampling_frequency=sampling_frequency,
+    frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,
+    # frequency_domain_source_model=lal_binary_black_hole_relative_binning,
+    parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters,
+    waveform_arguments=waveform_arguments,
+)
+alt_likelihood = bilby.gw.likelihood.GravitationalWaveTransient(
+    interferometers=ifos,
+    waveform_generator=alt_waveform_generator,
+)
+likelihood.distance_marginalization = False
+weights = list()
+for ii in trange(len(result.posterior)):
+    parameters = dict(result.posterior.iloc[ii])
+    likelihood.parameters.update(parameters)
+    alt_likelihood.parameters.update(parameters)
+    weights.append(
+        alt_likelihood.log_likelihood_ratio() - likelihood.log_likelihood_ratio()
+    )
+weights = np.exp(weights)
+print(
+    f"Reweighting efficiency is {np.mean(weights)**2 / np.mean(weights**2) * 100:.2f}%"
+)
+print(f"Binned vs unbinned log Bayes factor {np.log(np.mean(weights)):.2f}")
+
+# Make a corner plot.
+# result.plot_corner()
diff --git a/test/gw/likelihood/relative_binning_test.py b/test/gw/likelihood/relative_binning_test.py
new file mode 100644
index 0000000000000000000000000000000000000000..2f1352e4174bad7cafe3854644968b91807c40b9
--- /dev/null
+++ b/test/gw/likelihood/relative_binning_test.py
@@ -0,0 +1,166 @@
+import unittest
+from copy import deepcopy
+
+import bilby
+import numpy as np
+from parameterized import parameterized
+
+
+class TestRelativeBinningLikelihood(unittest.TestCase):
+    def setUp(self):
+        duration = 16
+        fmin = 20
+        sampling_frequency = 8192
+        self.test_parameters = dict(
+            chirp_mass=13,
+            mass_ratio=0.5,
+            a_1=0.3,
+            a_2=0.4,
+            tilt_1=1.0,
+            tilt_2=0.2,
+            phi_12=1.0,
+            phi_jl=2.0,
+            luminosity_distance=2000.0,
+            theta_jn=0.4,
+            psi=0.659,
+            phase=1.3,
+            geocent_time=1187008882,
+            ra=1.3,
+            dec=-1.2,
+        )
+
+        ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"])
+        # np.random.seed(170817)
+        ifos.set_strain_data_from_power_spectral_densities(
+            sampling_frequency=sampling_frequency, duration=duration,
+            start_time=self.test_parameters['geocent_time'] - duration + 2.
+        )
+        for ifo in ifos:
+            ifo.minimum_frequency = fmin
+
+        spline_calibration_nodes = 10
+        self.calibration_parameters = {}
+        for ifo in ifos:
+            ifo.calibration_model = bilby.gw.calibration.CubicSpline(
+                prefix=f"recalib_{ifo.name}_",
+                minimum_frequency=ifo.minimum_frequency,
+                maximum_frequency=ifo.maximum_frequency,
+                n_points=spline_calibration_nodes
+            )
+            for i in range(spline_calibration_nodes):
+                self.test_parameters[f"recalib_{ifo.name}_amplitude_{i}"] = 0
+                self.test_parameters[f"recalib_{ifo.name}_phase_{i}"] = 0
+                # Calibration errors of 5% in amplitude and 5 degrees in phase
+                self.calibration_parameters[f"recalib_{ifo.name}_amplitude_{i}"] = \
+                    np.random.normal(loc=0, scale=0.05)
+                self.calibration_parameters[f"recalib_{ifo.name}_phase_{i}"] = \
+                    np.random.normal(loc=0, scale=5 * np.pi / 180)
+
+        priors = bilby.gw.prior.BBHPriorDict()
+        priors.pop("mass_1")
+        priors.pop("mass_2")
+        # priors["chirp_mass"] = bilby.core.prior.Uniform(1.29, 1.31)
+        priors["chirp_mass"] = bilby.core.prior.Uniform(12, 14)
+        priors["mass_ratio"] = bilby.core.prior.Uniform(0.125, 1)
+        priors["geocent_time"] = bilby.core.prior.Uniform(
+            self.test_parameters['geocent_time'] - 0.1,
+            self.test_parameters['geocent_time'] + 0.1)
+        priors["fiducial"] = 0
+        self.priors = priors
+
+        approximant = "IMRPhenomXP"
+        non_bin_wfg = bilby.gw.WaveformGenerator(
+            duration=duration, sampling_frequency=sampling_frequency,
+            frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,
+            waveform_arguments=dict(
+                reference_frequency=fmin, minimum_frequency=fmin, approximant=approximant)
+        )
+        bin_wfg = bilby.gw.waveform_generator.WaveformGenerator(
+            duration=duration, sampling_frequency=sampling_frequency,
+            frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole_relative_binning,
+            waveform_arguments=dict(
+                reference_frequency=fmin, approximant=approximant, minimum_frequency=fmin)
+        )
+        ifos.inject_signal(
+            parameters=self.test_parameters,
+            waveform_generator=non_bin_wfg,
+            raise_error=False,
+        )
+        self.ifos = ifos
+
+        self.non_bin = bilby.gw.likelihood.GravitationalWaveTransient(
+            interferometers=ifos, waveform_generator=deepcopy(non_bin_wfg),
+            priors=priors.copy()
+        )
+        self.binned = bilby.gw.likelihood.RelativeBinningGravitationalWaveTransient(
+            interferometers=ifos, waveform_generator=deepcopy(bin_wfg),
+            fiducial_parameters=self.test_parameters,
+            priors=priors.copy(),
+            epsilon=0.05,
+            # chi=0.2,
+        )
+        self.non_bin.parameters.update(self.test_parameters)
+        self.reference_ln_l = self.non_bin.log_likelihood_ratio()
+        self.bin_wfg = bin_wfg
+        self.priors = priors
+
+    def tearDown(self):
+        del (
+            self.non_bin,
+            self.binned,
+        )
+
+    def test_matches_non_binned_many(self):
+        for _ in range(100):
+            self.non_bin.parameters.update(self.priors.sample())
+            self.binned.parameters.update(self.priors.sample())
+            regular_ln_l = self.non_bin.log_likelihood_ratio()
+            binned_ln_l = self.binned.log_likelihood_ratio()
+            if regular_ln_l - self.reference_ln_l < -20:
+                continue
+            self.assertLess(
+                abs(regular_ln_l - binned_ln_l)
+                / self.reference_ln_l,
+                1.5e-2
+            )
+
+    @parameterized.expand([(False, ), (True, )])
+    def test_matches_non_binned(self, add_cal_errors):
+        self.non_bin.parameters.update(self.test_parameters)
+        self.binned.parameters.update(self.test_parameters)
+        if add_cal_errors:
+            self.non_bin.parameters.update(self.calibration_parameters)
+            self.binned.parameters.update(self.calibration_parameters)
+        self.assertLess(
+            abs(self.non_bin.log_likelihood_ratio() - self.binned.log_likelihood_ratio())
+            / self.reference_ln_l,
+            1.5e-2
+        )
+
+    def test_optimization_gives_good_match(self):
+        fiducial_parameters = self.test_parameters.copy()
+        fiducial_parameters["chirp_mass"] *= 0.99
+        priors = self.priors.copy()
+        for key in [
+            "ra", "dec", "geocent_time", "phase", "psi", "theta_jn", "luminosity_distance",
+            "a_1", "a_2", "tilt_1", "tilt_2", "phi_12", "phi_jl",
+        ]:
+            priors[key] = self.test_parameters[key]
+        binned = bilby.gw.likelihood.RelativeBinningGravitationalWaveTransient(
+            interferometers=self.ifos, waveform_generator=deepcopy(self.bin_wfg),
+            priors=priors,
+            fiducial_parameters=fiducial_parameters,
+            epsilon=0.05,
+            update_fiducial_parameters=True,
+        )
+        self.non_bin.parameters.update(self.test_parameters)
+        binned.parameters.update(self.test_parameters)
+        self.assertLess(
+            abs(self.non_bin.log_likelihood_ratio() - binned.log_likelihood_ratio())
+            / self.reference_ln_l,
+            1.5e-2
+        )
+
+
+if __name__ == "__main__":
+    unittest.main()
diff --git a/test/gw/likelihood_test.py b/test/gw/likelihood_test.py
index 29962de2b96b5e2cf1eb0a5e97e906d7a7f871a2..e7e707c287aeb473cf3bb0528d9c78e876a39dd4 100644
--- a/test/gw/likelihood_test.py
+++ b/test/gw/likelihood_test.py
@@ -2,6 +2,7 @@ import itertools
 import os
 import pytest
 import unittest
+from copy import deepcopy
 from itertools import product
 from parameterized import parameterized
 
@@ -433,7 +434,7 @@ class TestMarginalizations(unittest.TestCase):
     The `time_jitter` parameter makes this a weaker dependence during sampling.
     """
     _parameters = product(
-        ["regular", "roq"],
+        ["regular", "roq", "relbin"],
         ["luminosity_distance", "geocent_time", "phase"],
         [True, False],
         [True, False],
@@ -465,6 +466,7 @@ class TestMarginalizations(unittest.TestCase):
             ra=1.375,
             dec=-1.2108,
             time_jitter=0,
+            fiducial=0,
         )
 
         self.interferometers = bilby.gw.detector.InterferometerList(["H1"])
@@ -524,6 +526,18 @@ class TestMarginalizations(unittest.TestCase):
         self.roq_linear_matrix_file = f"{roq_dir}/B_linear.npy"
         self.roq_quadratic_matrix_file = f"{roq_dir}/B_quadratic.npy"
 
+        self.relbin_waveform_generator = bilby.gw.waveform_generator.WaveformGenerator(
+            duration=self.duration,
+            sampling_frequency=self.sampling_frequency,
+            frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole_relative_binning,
+            start_time=1126259640,
+            waveform_arguments=dict(
+                reference_frequency=20.0,
+                minimum_frequency=20.0,
+                approximant="IMRPhenomPv2",
+            )
+        )
+
     def tearDown(self):
         del self.duration
         del self.sampling_frequency
@@ -542,7 +556,7 @@ class TestMarginalizations(unittest.TestCase):
 
     def likelihood_kwargs(self, kind, time_marginalization, phase_marginalization, distance_marginalization, priors):
         if priors is None:
-            priors = self.priors.copy()
+            priors = deepcopy(self.priors)
         if distance_marginalization and phase_marginalization:
             lookup = TestMarginalizations.lookup_phase
         elif distance_marginalization:
@@ -566,6 +580,9 @@ class TestMarginalizations(unittest.TestCase):
             ))
             if os.path.exists(self.__class__.path_to_roq_weights):
                 kwargs["weights"] = self.__class__.path_to_roq_weights
+        elif kind == "relbin":
+            kwargs["fiducial_parameters"] = deepcopy(self.parameters)
+            kwargs["waveform_generator"] = self.relbin_waveform_generator
         return kwargs
 
     def get_likelihood(
@@ -583,6 +600,10 @@ class TestMarginalizations(unittest.TestCase):
             cls_ = bilby.gw.likelihood.GravitationalWaveTransient
         elif kind == "roq":
             cls_ = bilby.gw.likelihood.ROQGravitationalWaveTransient
+        elif kind == "relbin":
+            cls_ = bilby.gw.likelihood.RelativeBinningGravitationalWaveTransient
+            kwargs["epsilon"] = 0.3
+            self.parameters["fiducial"] = 0
         else:
             raise ValueError(f"kind {kind} not understood")
         like = cls_(**kwargs)
@@ -591,6 +612,10 @@ class TestMarginalizations(unittest.TestCase):
         like.parameters = self.parameters.copy()
         if time_marginalization:
             like.parameters["geocent_time"] = self.interferometers.start_time
+        if distance_marginalization:
+            like.parameters["luminosity_distance"] = like._ref_dist
+        if phase_marginalization:
+            like.parameters["phase"] = 0.0
         return like
 
     def _template(self, marginalized, non_marginalized, key, prior=None, values=None):
@@ -630,7 +655,8 @@ class TestMarginalizations(unittest.TestCase):
             key=key,
         )
 
-    def test_time_marginalisation_full_segment(self):
+    @parameterized.expand(["regular", "relbin"])
+    def test_time_marginalisation_full_segment(self, kind):
         """
         Test time marginalised likelihood matches brute force version over
         just part of a segment.
@@ -642,15 +668,15 @@ class TestMarginalizations(unittest.TestCase):
         )
         priors["geocent_time"] = prior
         self._template(
-            self.get_likelihood("regular", time_marginalization=True, priors=priors.copy()),
-            self.get_likelihood("regular", priors=priors.copy()),
+            self.get_likelihood(kind, time_marginalization=True, priors=priors.copy()),
+            self.get_likelihood(kind, priors=priors.copy()),
             key="geocent_time",
             values=self.waveform_generator.time_array,
             prior=prior,
         )
 
     @parameterized.expand(
-        itertools.product(["regular", "roq"], *itertools.repeat([True, False], 3)),
+        itertools.product(["regular", "roq", "relbin"], *itertools.repeat([True, False], 3)),
         name_func=lambda func, num, param: (
             f"{func.__name__}_{num}__{param.args[0]}_" + "_".join([
                 ["D", "P", "T"][ii] for ii, val
@@ -832,19 +858,6 @@ class TestROQLikelihood(unittest.TestCase):
         self.roq.parameters["geocent_time"] = -5
         self.assertEqual(self.roq.log_likelihood_ratio(), np.nan_to_num(-np.inf))
 
-    def test_phase_marginalisation_roq(self):
-        """Test phase marginalised likelihood matches brute force version"""
-        self.non_roq_phase.parameters = self.test_parameters.copy()
-        self.roq_phase.parameters = self.test_parameters.copy()
-        self.assertLess(
-            abs(
-                self.non_roq_phase.log_likelihood_ratio()
-                - self.roq_phase.log_likelihood_ratio()
-            )
-            / self.non_roq_phase.log_likelihood_ratio(),
-            1e-3,
-        )
-
     def test_create_roq_weights_with_params(self):
         roq = bilby.gw.likelihood.ROQGravitationalWaveTransient(
             interferometers=self.ifos,
diff --git a/test/gw/source_test.py b/test/gw/source_test.py
index 627278a337df155d09a82a342e3e80bc4bf6608f..8a4b7625b4ed2c92990f36fab855de77f13b71a5 100644
--- a/test/gw/source_test.py
+++ b/test/gw/source_test.py
@@ -423,5 +423,199 @@ class TestBNSfreqseq(unittest.TestCase):
             self.assertLess(diff / norm, 1e-5)
 
 
+class TestRelbinBBH(unittest.TestCase):
+    def setUp(self):
+        self.parameters = dict(
+            mass_1=30.0,
+            mass_2=30.0,
+            luminosity_distance=400.0,
+            a_1=0.4,
+            tilt_1=0.2,
+            phi_12=1.0,
+            a_2=0.8,
+            tilt_2=2.7,
+            phi_jl=2.9,
+            theta_jn=0.3,
+            phase=0.0,
+        )
+        self.waveform_kwargs_fiducial = dict(
+            waveform_approximant="IMRPhenomPv2",
+            reference_frequency=50.0,
+            minimum_frequency=20.0,
+            catch_waveform_errors=True,
+            fiducial=True,
+        )
+        self.waveform_kwargs_binned = dict(
+            waveform_approximant="IMRPhenomPv2",
+            reference_frequency=50.0,
+            minimum_frequency=20.0,
+            catch_waveform_errors=True,
+            fiducial=False,
+            frequency_bin_edges=np.arange(20, 1500, 50)
+        )
+        self.frequency_array = bilby.core.utils.create_frequency_series(2048, 4)
+        self.bad_parameters = copy(self.parameters)
+        self.bad_parameters["mass_1"] = -30.0
+
+    def tearDown(self):
+        del self.parameters
+        del self.waveform_kwargs_fiducial
+        del self.waveform_kwargs_binned
+        del self.frequency_array
+        del self.bad_parameters
+
+    def test_relbin_fiducial_bbh_works_runs_valid_parameters(self):
+        self.parameters.update(self.waveform_kwargs_fiducial)
+        self.assertIsInstance(
+            bilby.gw.source.lal_binary_black_hole_relative_binning(
+                self.frequency_array, **self.parameters
+            ),
+            dict,
+        )
+
+    def test_relbin_binned_bbh_works_runs_valid_parameters(self):
+        self.parameters.update(self.waveform_kwargs_binned)
+        self.assertIsInstance(
+            bilby.gw.source.lal_binary_black_hole_relative_binning(
+                self.frequency_array, **self.parameters
+            ),
+            dict,
+        )
+
+    def test_waveform_error_catching_fiducial(self):
+        self.bad_parameters.update(self.waveform_kwargs_fiducial)
+        self.assertIsNone(
+            bilby.gw.source.lal_binary_black_hole_relative_binning(
+                self.frequency_array, **self.bad_parameters
+            )
+        )
+
+    def test_waveform_error_catching_binned(self):
+        self.bad_parameters.update(self.waveform_kwargs_binned)
+        self.assertIsNone(
+            bilby.gw.source.lal_binary_black_hole_relative_binning(
+                self.frequency_array, **self.bad_parameters
+            )
+        )
+
+    def test_waveform_error_raising_fiducial(self):
+        raise_error_parameters = copy(self.bad_parameters)
+        raise_error_parameters.update(self.waveform_kwargs_fiducial)
+        raise_error_parameters["catch_waveform_errors"] = False
+        with self.assertRaises(Exception):
+            bilby.gw.source.lal_binary_black_hole_relative_binning(
+                self.frequency_array, **raise_error_parameters
+            )
+
+    def test_waveform_error_raising_binned(self):
+        raise_error_parameters = copy(self.bad_parameters)
+        raise_error_parameters.update(self.waveform_kwargs_binned)
+        raise_error_parameters["catch_waveform_errors"] = False
+        with self.assertRaises(Exception):
+            bilby.gw.source.lal_binary_black_hole_relative_binning(
+                self.frequency_array, **raise_error_parameters
+            )
+
+    def test_relbin_bbh_fails_without_fiducial_option(self):
+        with self.assertRaises(TypeError):
+            bilby.gw.source.lal_binary_black_hole_relative_binning(
+                self.frequency_array, **self.parameters
+            )
+
+    def test_relbin_bbh_xpprecession_version(self):
+        self.parameters.update(self.waveform_kwargs_fiducial)
+        self.parameters["waveform_approximant"] = "IMRPhenomXP"
+
+        # Test that we can modify the XP precession version
+        out_v223 = bilby.gw.source.lal_binary_black_hole_relative_binning(
+            self.frequency_array, PhenomXPrecVersion=223, **self.parameters
+        )
+        out_v102 = bilby.gw.source.lal_binary_black_hole_relative_binning(
+            self.frequency_array, PhenomXPrecVersion=102, **self.parameters
+        )
+        self.assertFalse(np.all(out_v223["plus"] == out_v102["plus"]))
+
+
+class TestRelbinBNS(unittest.TestCase):
+    def setUp(self):
+        self.parameters = dict(
+            mass_1=1.4,
+            mass_2=1.4,
+            luminosity_distance=400.0,
+            a_1=0.4,
+            a_2=0.3,
+            tilt_1=0.2,
+            tilt_2=1.7,
+            phi_jl=0.2,
+            phi_12=0.9,
+            theta_jn=1.7,
+            phase=0.0,
+            lambda_1=100.0,
+            lambda_2=100.0,
+        )
+        self.waveform_kwargs_fiducial = dict(
+            waveform_approximant="IMRPhenomPv2_NRTidal",
+            reference_frequency=50.0,
+            minimum_frequency=20.0,
+            fiducial=True,
+        )
+        self.waveform_kwargs_binned = dict(
+            waveform_approximant="IMRPhenomPv2_NRTidal",
+            reference_frequency=50.0,
+            minimum_frequency=20.0,
+            fiducial=False,
+            frequency_bin_edges=np.arange(20, 1500, 50),
+        )
+        self.frequency_array = bilby.core.utils.create_frequency_series(2048, 4)
+
+    def tearDown(self):
+        del self.parameters
+        del self.waveform_kwargs_fiducial
+        del self.waveform_kwargs_binned
+        del self.frequency_array
+
+    def test_relbin_fiducial_bns_runs_with_valid_parameters(self):
+        self.parameters.update(self.waveform_kwargs_fiducial)
+        self.assertIsInstance(
+            bilby.gw.source.lal_binary_neutron_star_relative_binning(
+                self.frequency_array, **self.parameters
+            ),
+            dict,
+        )
+
+    def test_relbin_binned_bns_runs_with_valid_parameters(self):
+        self.parameters.update(self.waveform_kwargs_binned)
+        self.assertIsInstance(
+            bilby.gw.source.lal_binary_neutron_star_relative_binning(
+                self.frequency_array, **self.parameters
+            ),
+            dict,
+        )
+
+    def test_relbin_bns_fails_without_fiducial_option(self):
+        with self.assertRaises(TypeError):
+            bilby.gw.source.lal_binary_neutron_star_relative_binning(
+                self.frequency_array, **self.parameters
+            )
+
+    def test_fiducial_fails_without_tidal_parameters(self):
+        self.parameters.pop("lambda_1")
+        self.parameters.pop("lambda_2")
+        self.parameters.update(self.waveform_kwargs_fiducial)
+        with self.assertRaises(TypeError):
+            bilby.gw.source.lal_binary_neutron_star_relative_binning(
+                self.frequency_array, **self.parameters
+            )
+
+    def test_binned_fails_without_tidal_parameters(self):
+        self.parameters.pop("lambda_1")
+        self.parameters.pop("lambda_2")
+        self.parameters.update(self.waveform_kwargs_binned)
+        with self.assertRaises(TypeError):
+            bilby.gw.source.lal_binary_neutron_star_relative_binning(
+                self.frequency_array, **self.parameters
+            )
+
+
 if __name__ == "__main__":
     unittest.main()