diff --git a/tupak/core/sampler.py b/tupak/core/sampler.py index 6ef63b94edce78916030d27a895b6a240cd8cf81..719731dd15f5c9ffa5a908d43dccc59bf5a6dfb1 100644 --- a/tupak/core/sampler.py +++ b/tupak/core/sampler.py @@ -1155,7 +1155,44 @@ class Ptemcee(Emcee): class Pymc3(Sampler): - """ tupak wrapper of the pymc3 sampler (https://docs.pymc.io/) """ + """ tupak wrapper of the PyMC3 sampler (https://docs.pymc.io/) + + All keyword arguments (i.e., the kwargs) passed to `run_sampler` will be + propogated to `pymc3.sample` where appropriate, see documentation for that + class for further help. Under Keyword Arguments, we list commonly used + kwargs and the tupak, or where appropriate, PyMC3 defaults. + + Keyword Arguments + ----------------- + draws: int, (1000) + The number of sample draws from the posterior per chain. + chains: int, (2) + The number of independent MCMC chains to run. + cores: int, (1) + The number of CPU cores to use. + tune: int, (500) + The number of tuning (or burn-in) samples per chain. + discard_tuned_samples: bool, True + Set whether to automatically discard the tuning samples from the final + chains. + step: str, dict + Provide a step method name, or dictionary of step method names keyed to + particular variable names (these are case insensitive). If no method is + provided for any particular variable then PyMC3 will automatically + decide upon a default, with the first option being the NUTS sampler. + The currently allowed methods are 'NUTS', 'HamiltonianMC', + 'Metropolis', 'BinaryMetropolis', 'BinaryGibbsMetropolis', 'Slice', and + 'CategoricalGibbsMetropolis'. Note: you cannot provide a PyMC3 step + method function itself here as it is outside of the model context + manager. + nuts_kwargs: dict + Keyword arguments for the NUTS sampler. + step_kwargs: dict + Options for steps methods other than NUTS. The dictionary is keyed on + lowercase step method names with values being dictionaries of keywords + for the given step method. + + """ def _verify_parameters(self): """