From b1cf1ff5960259af030d42bb563a45ac5c59d568 Mon Sep 17 00:00:00 2001 From: Gregory Ashton <gregory.ashton@ligo.org> Date: Wed, 16 May 2018 08:12:03 +1000 Subject: [PATCH] Replace double underscores --- tupak/sampler.py | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/tupak/sampler.py b/tupak/sampler.py index 1f53b5ace..d2041934b 100644 --- a/tupak/sampler.py +++ b/tupak/sampler.py @@ -46,11 +46,11 @@ class Sampler(object): self.use_ratio = use_ratio self.external_sampler = external_sampler - self.search_parameter_keys = [] - self.fixed_parameter_keys = [] + self.__search_parameter_keys = [] + self.__fixed_parameter_keys = [] self.initialise_parameters() self.verify_parameters() - self.ndim = len(self.search_parameter_keys) + self.ndim = len(self.__search_parameter_keys) self.kwargs = kwargs self.result = result @@ -69,10 +69,10 @@ class Sampler(object): def result(self, result): if result is None: self.__result = Result() - self.__result.search_parameter_keys = self.search_parameter_keys + self.__result.__search_parameter_keys = self.__search_parameter_keys self.__result.parameter_labels = [ self.priors[k].latex_label for k in - self.search_parameter_keys] + self.__search_parameter_keys] self.__result.label = self.label self.__result.outdir = self.outdir elif type(result) is Result: @@ -123,17 +123,17 @@ class Sampler(object): for key in self.priors: if isinstance(self.priors[key], Prior) is True \ and self.priors[key].is_fixed is False: - self.search_parameter_keys.append(key) + self.__search_parameter_keys.append(key) elif isinstance(self.priors[key], Prior) \ and self.priors[key].is_fixed is True: self.likelihood.parameters[key] = \ self.priors[key].sample() - self.fixed_parameter_keys.append(key) + self.__fixed_parameter_keys.append(key) logging.info("Search parameters:") - for key in self.search_parameter_keys: + for key in self.__search_parameter_keys: logging.info(' {} ~ {}'.format(key, self.priors[key])) - for key in self.fixed_parameter_keys: + for key in self.__fixed_parameter_keys: logging.info(' {} = {}'.format(key, self.priors[key].peak)) def verify_parameters(self): @@ -144,15 +144,15 @@ class Sampler(object): "Source model does not contain keys {}".format(unmatched_keys)) def prior_transform(self, theta): - return [self.priors[key].rescale(t) for key, t in zip(self.search_parameter_keys, theta)] + return [self.priors[key].rescale(t) for key, t in zip(self.__search_parameter_keys, theta)] def log_prior(self, theta): return np.sum( [np.log(self.priors[key].prob(t)) for key, t in - zip(self.search_parameter_keys, theta)]) + zip(self.__search_parameter_keys, theta)]) def log_likelihood(self, theta): - for i, k in enumerate(self.search_parameter_keys): + for i, k in enumerate(self.__search_parameter_keys): self.likelihood.parameters[k] = theta[i] if self.use_ratio: return self.likelihood.log_likelihood_ratio() @@ -170,7 +170,7 @@ class Sampler(object): """ draw = np.array([self.priors[key].sample() - for key in self.search_parameter_keys]) + for key in self.__search_parameter_keys]) if np.isinf(self.log_likelihood(draw)): logging.info('Prior draw {} has inf likelihood'.format(draw)) if np.isinf(self.log_prior(draw)): @@ -433,7 +433,7 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir', else: result.log_bayes_factor = result.logz - result.noise_logz result.injection_parameters = injection_parameters - result.fixed_parameter_keys = [key for key in priors if isinstance(key, prior.DeltaFunction)] + result.__fixed_parameter_keys = [key for key in priors if isinstance(key, prior.DeltaFunction)] result.priors = priors result.kwargs = sampler.kwargs result.samples_to_data_frame() -- GitLab