From b2c04968acde412874fe89476f41622711883b19 Mon Sep 17 00:00:00 2001
From: Matthew Pitkin <matthew.pitkin@ligo.org>
Date: Tue, 2 Apr 2019 14:11:20 +0100
Subject: [PATCH] flake8 fixes

---
 bilby/core/result.py | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/bilby/core/result.py b/bilby/core/result.py
index 0522b62be..379308248 100644
--- a/bilby/core/result.py
+++ b/bilby/core/result.py
@@ -3,6 +3,7 @@ from __future__ import division
 import os
 from distutils.version import LooseVersion
 from collections import OrderedDict, namedtuple
+from functools import reduce
 
 import numpy as np
 import pandas as pd
@@ -1305,7 +1306,6 @@ class ResultList(object):
 
             # get evidences and weights
             log_evs = np.array([res.log_evidence for res in self])
-            log_weights = [np.log(res.nested_samples['weights']) for res in self]
 
             # average the evidence for each run
             log_evidence = reduce(np.logaddexp, log_evs) - np.log(len(self))
@@ -1317,7 +1317,7 @@ class ResultList(object):
                 result.log_bayes_factor = log_evidence - result.log_noise_evidence
 
             # add errors in quadrature
-            log_errs = [res.log_evidence_err for res in self is np.isfinite(res.log_evidence_err)]
+            log_errs = [res.log_evidence_err for res in self if np.isfinite(res.log_evidence_err)]
             if len(log_errs) > 0:
                 log_err = 2. * log_errs[0]
                 for err in log_errs[1:]:
@@ -1330,7 +1330,7 @@ class ResultList(object):
             fracs = [n / np.max(nlives) for n in Ns]  # number of samples from each Result
 
             # select samples from the individual posteriors
-            posts = [res.posterior[np.random.uniform(size=len(post)) < frac] for res, frac in zip(self, fracs)]
+            posts = [res.posterior[np.random.uniform(size=len(res.posterior)) < frac] for res, frac in zip(self, fracs)]
 
             # remove original nested_samples
             result.nested_samples = None
-- 
GitLab