From b2c04968acde412874fe89476f41622711883b19 Mon Sep 17 00:00:00 2001 From: Matthew Pitkin <matthew.pitkin@ligo.org> Date: Tue, 2 Apr 2019 14:11:20 +0100 Subject: [PATCH] flake8 fixes --- bilby/core/result.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/bilby/core/result.py b/bilby/core/result.py index 0522b62be..379308248 100644 --- a/bilby/core/result.py +++ b/bilby/core/result.py @@ -3,6 +3,7 @@ from __future__ import division import os from distutils.version import LooseVersion from collections import OrderedDict, namedtuple +from functools import reduce import numpy as np import pandas as pd @@ -1305,7 +1306,6 @@ class ResultList(object): # get evidences and weights log_evs = np.array([res.log_evidence for res in self]) - log_weights = [np.log(res.nested_samples['weights']) for res in self] # average the evidence for each run log_evidence = reduce(np.logaddexp, log_evs) - np.log(len(self)) @@ -1317,7 +1317,7 @@ class ResultList(object): result.log_bayes_factor = log_evidence - result.log_noise_evidence # add errors in quadrature - log_errs = [res.log_evidence_err for res in self is np.isfinite(res.log_evidence_err)] + log_errs = [res.log_evidence_err for res in self if np.isfinite(res.log_evidence_err)] if len(log_errs) > 0: log_err = 2. * log_errs[0] for err in log_errs[1:]: @@ -1330,7 +1330,7 @@ class ResultList(object): fracs = [n / np.max(nlives) for n in Ns] # number of samples from each Result # select samples from the individual posteriors - posts = [res.posterior[np.random.uniform(size=len(post)) < frac] for res, frac in zip(self, fracs)] + posts = [res.posterior[np.random.uniform(size=len(res.posterior)) < frac] for res, frac in zip(self, fracs)] # remove original nested_samples result.nested_samples = None -- GitLab