diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py index 692980876401065b16a68a1955333fbab57d14d3..2f11d94ff54c2c9c8e82bc9aca505e20b3e5b0e0 100644 --- a/bilby/core/sampler/cpnest.py +++ b/bilby/core/sampler/cpnest.py @@ -101,12 +101,13 @@ class Cpnest(NestedSampler): out.plot() self.result.posterior = DataFrame(out.posterior_samples) - self.result.nested_samples = DataFrame(out.get_nested_samples(filename=None)) - self.result.nested_samples.rename(columns=dict(logL='log_likelihood')) - self.result.nested_samples['weights'] = np.exp(compute_weights(self.result.nested_samples['log_likelihood'], - out.NS.state.nlive)[1]) - self.result.posterior.rename(columns=dict( - logL='log_likelihood', logPrior='log_prior'), inplace=True) + self.result.nested_samples = DataFrame(out.get_nested_samples(filename='')) + self.result.nested_samples.rename(columns=dict(logL='log_likelihood'), inplace=True) + self.result.posterior.rename(columns=dict(logL='log_likelihood', logPrior='log_prior'), + inplace=True) + _, log_weights = compute_weights(np.array(self.result.nested_samples.log_likelihood), + np.array(out.NS.state.nlive)) + self.result.nested_samples.weights = np.exp(log_weights) self.result.log_evidence = out.NS.state.logZ self.result.log_evidence_err = np.sqrt(out.NS.state.info / out.NS.state.nlive) return self.result