diff --git a/bilby/core/result.py b/bilby/core/result.py index ffffa8603b788e7bb377638923aedb974c16649f..27f86ce207f1b379fa542b7dcb828a92620e9074 100644 --- a/bilby/core/result.py +++ b/bilby/core/result.py @@ -1172,7 +1172,7 @@ class Result(object): return outdir -class ResultsList(object): +class ResultList(object): def __init__(self, results=None): """ A class to store a list of :class:`bilby.core.result.Result` objects @@ -1201,6 +1201,12 @@ class ResultsList(object): self.append(results) + def __getitem__(self, idx): + return self._results[idx] + + def pop(self, idx): + return self._results.pop(idx) + def append(self, results): """ Append a :class:`bilby.core.result.Result`, or set of results, to the @@ -1214,7 +1220,7 @@ class ResultsList(object): pointing to results objects, to append to the list. """ - if not isinstance(results, (list, ResultsList)): + if not isinstance(results, (list, ResultList)): results = [results] # make into list for iteration # loop over list @@ -1288,10 +1294,51 @@ class ResultsList(object): if not np.all([res.nested_samples is not None for res in self]): raise ValueError("Cannot combine results: nested samples available") - # combine all nested samples + # all sets of nested samples + nests = [res.nested_samples is not None for res in self] + # get number of live points from runs + try: + nlives = [res.sampler_kwargs['nlive'] for res in self] + except KeyError: + raise KeyError("Result did not contain the number of live points used") + + # get evidences and weights + log_evs = np.array([res.log_evidence for res in self]) + log_weights = [np.log(res.nested_samples['weights']) for res in self] + + # average the evidence for each run + log_evidence = reduce(np.logaddexp, log_evs) - np.log(len(self)) + result.log_evidence = log_evidence + if result.use_ratio: + result.log_bayes_factor = log_evidence + result.log_evidence = log_evidence + else: + result.log_bayes_factor = log_evidence - result.log_noise_evidence + if np.insfinite(result.log_evidence_err): + # standard error on the mean + result.log_evidence_err -= 0.5 * np.log(len(self)) + + # combine all nested samples (see cpnest nest2pos) + fracs = np.exp(log_evs - np.max(log_evs)) # relative weights for each Result + Ns = [fracs[i] / len(nests[i]) for i in range(len(self))] + fracs = [n / np.max(nlives) for n in Ns] # number of samples from each Result + + # select samples from the individual posteriors + posts = [res.posterior[np.random.uniform(size=len(post)) < frac] for res, frac in zip(self, fracs)] + + # remove original nested_samples + result.nested_samples = None + result.sampler_kwargs = None else: # combine MCMC samples + posts = [res for res in self] + + # combine the samples + combined_posteriors = pd.concat(posts, ignore_index=True) + result.posterior = combined_posteriors.sample(len(combined_posteriors)) # shuffle + + return result def plot_multiple(results, filename=None, labels=None, colours=None, diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py index 45f87ba6c9c12bd1cb5d0580a8651eb9d19b54f7..eeb255579dcdc47cadd93b55ea498300df5f42a7 100644 --- a/bilby/core/sampler/cpnest.py +++ b/bilby/core/sampler/cpnest.py @@ -50,6 +50,7 @@ class Cpnest(NestedSampler): def run_sampler(self): from cpnest import model as cpmodel, CPNest from cpnest.parameter import LivePoint + from cpnest.nest2pos import compute_weights class Model(cpmodel.Model): """ A wrapper class to pass our log_likelihood into cpnest """ @@ -87,6 +88,9 @@ class Cpnest(NestedSampler): self.result.posterior = DataFrame(out.posterior_samples) self.result.nested_samples = DataFrame(out.get_nested_samples(filename=None)) + self.result.nested_samples.rename(columns=dict(logL='log_likelihood')) + self.result.nested_samples['weights'] = np.exp(compute_weights(self.result.nested_samples['log_likelihood'], + out.NS.state.nlive)[1]) self.result.posterior.rename(columns=dict( logL='log_likelihood', logPrior='log_prior'), inplace=True) self.result.log_evidence = out.NS.state.logZ