From c2efc37150762e4b360382a35b000ec02936314f Mon Sep 17 00:00:00 2001 From: Aditya Vijaykumar <vijaykumar.aditya@gmail.com> Date: Wed, 14 Oct 2020 10:26:31 +0530 Subject: [PATCH] changed bilby.core.priors to bilby.core.prior --- docs/prior.txt | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/prior.txt b/docs/prior.txt index f55aafe76..cea75744c 100644 --- a/docs/prior.txt +++ b/docs/prior.txt @@ -45,7 +45,7 @@ which provides extra functionality. For example, to sample from the prior: .. code:: python - >>> priors = bilby.core.priors.PriorDict() + >>> priors = bilby.core.prior.PriorDict() >>> priors['a'] = bilby.prior.Uniform(minimum=0, maximum=10, name='a') >>> priors['b'] = bilby.prior.Uniform(minimum=0, maximum=10, name='b') >>> priors.sample() @@ -89,7 +89,7 @@ matrix and standard deviations, e.g.: >>> names = ['a', 'b'] # set the parameter names >>> mu = [0., 5.] # the means of the parameters >>> cov = [[2., 0.7], [0.7, 3.]] # the covariance matrix - >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov) + >>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov) It is also possible to define a mixture model of multiple multivariate Gaussian modes of different weights if required, e.g.: @@ -100,7 +100,7 @@ different weights if required, e.g.: >>> mu = [[0., 5.], [2., 7.]] # the means of the parameters >>> cov = [[[2., 0.7], [0.7, 3.]], [[1., -0.9], [-0.9, 5.]]] # the covariance matrix >>> weights = [0.3, 0.7] # weights of each mode - >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights) + >>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights) The distribution can also have hard bounds on each parameter by supplying them. -- GitLab