diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index aad2ce4270789a59577aa585a73fb861f626a80e..72897ad8ca2b633aace5fc1510d3635161d6caf5 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -13,8 +13,21 @@ stages: - test - deploy -# test example on Debian 8 "jessie" -exitcode-jessie: +# test example on python 2 +python-2: + stage: test + image: continuumio/anaconda + before_script: + - apt install -y libgl1-mesa-glx + - pip install -r requirements.txt + - pip install lalsuite enum gwpy + script: + - python setup.py install + # Run tests without finding coverage + - for test in test/*tests.py; do python $test; done + +# test example on python 3 +python-3: stage: test image: continuumio/anaconda3 before_script: @@ -57,7 +70,8 @@ exitcode-jessie: pages: stage: deploy dependencies: - - exitcode-jessie + - python-3 + - python-2 script: - mkdir public/ - mv htmlcov/ public/ diff --git a/examples/injection_examples/marginalized_likelihood.py b/examples/injection_examples/marginalized_likelihood.py index 8db282609feb5f8c0318f69747e156b56a63fa3c..89fb01ea7a383019b70bc4ce5962c14d7b76f3ba 100644 --- a/examples/injection_examples/marginalized_likelihood.py +++ b/examples/injection_examples/marginalized_likelihood.py @@ -44,7 +44,8 @@ for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'phase', 'iota # This is still under development so care should be taken with the marginalised likelihood. likelihood = tupak.gw.GravitationalWaveTransient( interferometers=IFOs, waveform_generator=waveform_generator, prior=priors, - distance_marginalization=True, phase_marginalization=False) + distance_marginalization=False, phase_marginalization=True, + time_marginalization=False) # Run sampler result = tupak.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', diff --git a/test/make_standard_data.py b/test/make_standard_data.py index cc9731bf444f82f061591db94f58bba28442b0a9..5b3efe371a9d921f4cb4aa6661744076fd68a9f3 100644 --- a/test/make_standard_data.py +++ b/test/make_standard_data.py @@ -32,16 +32,17 @@ simulation_parameters = dict( psi=2.659 ) -waveform_generator = WaveformGenerator(time_duration=time_duration, sampling_frequency=sampling_frequency, - frequency_domain_source_model=tupak.gw.source.lal_binary_black_hole, - parameters=simulation_parameters) +waveform_generator = WaveformGenerator( + duration=time_duration, sampling_frequency=sampling_frequency, + frequency_domain_source_model=tupak.gw.source.lal_binary_black_hole, + parameters=simulation_parameters) signal = waveform_generator.frequency_domain_strain() -IFO = tupak.gw.detector.get_interferometer_with_fake_noise_and_injection(name='H1', injection_polarizations=signal, - injection_parameters=simulation_parameters, - time_duration=time_duration, plot=False, - sampling_frequency=sampling_frequency) +IFO = tupak.gw.detector.get_interferometer_with_fake_noise_and_injection( + name='H1', injection_polarizations=signal, + injection_parameters=simulation_parameters, duration=time_duration, + plot=False, sampling_frequency=sampling_frequency) hf_signal_and_noise = IFO.strain_data.frequency_domain_strain frequencies = tupak.core.utils.create_frequency_series( diff --git a/test/other_tests.py b/test/other_tests.py index 90c613ff2b4800d890afe7e8738eccb38f8cd70b..4efdd9a5e2548711d149f97c9d1d746a1ab4c42e 100644 --- a/test/other_tests.py +++ b/test/other_tests.py @@ -44,8 +44,11 @@ class Test(unittest.TestCase): self.dir_path + '/test/standard_data.txt').T hf_signal_and_noise_saved = hf_real_saved + 1j * hf_imag_saved - self.assertTrue(np.array_equal(self.msd['frequencies'], frequencies_saved)) - self.assertAlmostEqual(all(self.msd['hf_signal_and_noise'] - hf_signal_and_noise_saved), 0.00000000, 5) + self.assertTrue(np.array_equal( + self.msd['frequencies'], frequencies_saved)) + self.assertAlmostEqual(all( + self.msd['hf_signal_and_noise'] - hf_signal_and_noise_saved), + 0.00000000, 5) def test_recover_luminosity_distance(self): likelihood = tupak.gw.likelihood.GravitationalWaveTransient( @@ -61,8 +64,9 @@ class Test(unittest.TestCase): result = tupak.core.sampler.run_sampler( likelihood, priors, sampler='dynesty', verbose=False, npoints=100) - self.assertAlmostEqual(np.mean(result.samples), dL, - delta=3*np.std(result.samples)) + self.assertAlmostEqual( + np.mean(result.posterior.luminosity_distance), dL, + delta=3*np.std(result.posterior.luminosity_distance)) if __name__ == '__main__':