diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py index b0d996f3f490fc38406fdd5a84f217cda4bf9abe..6d9047541e6bcc801b83657b9e04fc5d247d6a99 100644 --- a/bilby/core/sampler/base_sampler.py +++ b/bilby/core/sampler/base_sampler.py @@ -399,6 +399,40 @@ class Sampler(object): class NestedSampler(Sampler): npoints_equiv_kwargs = ['nlive', 'nlives', 'n_live_points', 'npoints', 'npoint', 'Nlive'] + def reorder_loglikelihoods(self, unsorted_loglikelihoods, unsorted_samples, + sorted_samples): + """ Reorders the stored log-likelihood after they have been reweighted + + This creates a sorting index by matching the reweights `result.samples` + against the raw samples, then uses this index to sort the + loglikelihoods + + Parameters + ---------- + sorted_samples, unsorted_samples: array + Sorted and unsorted values of the samples. These should be of the same + shape and contain the same sample values, but in different orders + unsorted_loglikelihoods: array + The loglikelihoods corresponding to the unsorted_samples + + Returns + ------- + sorted_loglikelihoods: array + The loglikelihoods reordered to match that of the sorted_samples + + + """ + + idxs = [] + for ii in range(len(unsorted_loglikelihoods)): + idx = np.where(np.all(sorted_samples[ii] == unsorted_samples, axis=1)) + if len(idx) > 1: + raise ValueError( + "Multiple matches found between sorted and unsorted samples") + else: + idxs.append(idx[0]) + return unsorted_loglikelihoods(idxs) + class MCMCSampler(Sampler): nwalkers_equiv_kwargs = ['nwalker', 'nwalkers', 'draws'] diff --git a/bilby/core/sampler/dynesty.py b/bilby/core/sampler/dynesty.py index 23bdf8b701401b7591e734b3009aee256bf9a7a2..1f5129992c8527715974ffb2a29938fbd6788e14 100644 --- a/bilby/core/sampler/dynesty.py +++ b/bilby/core/sampler/dynesty.py @@ -164,9 +164,9 @@ class Dynesty(NestedSampler): out.samples, columns=self.search_parameter_keys) self.result.nested_samples['weights'] = weights self.result.nested_samples['log_likelihood'] = out.logl - idxs = [np.unique(np.where(self.result.samples[ii] == out.samples)[0]) - for ii in range(len(out.logl))] - self.result.log_likelihood_evaluations = out.logl[idxs] + self.result.log_likelihood_evaluations = self.reorder_loglikelihoods( + unsorted_loglikelihoods=out.logl, unsorted_samples=out.samples, + sorted_samples=self.result.samples) self.result.log_evidence = out.logz[-1] self.result.log_evidence_err = out.logzerr[-1] diff --git a/bilby/core/sampler/nestle.py b/bilby/core/sampler/nestle.py index aa2364462b6120b1bff91089c1f297f7b1c0b6b6..8bcfca7d480192b99e9091babd0c7bf83f2097d9 100644 --- a/bilby/core/sampler/nestle.py +++ b/bilby/core/sampler/nestle.py @@ -64,9 +64,9 @@ class Nestle(NestedSampler): out.samples, columns=self.search_parameter_keys) self.result.nested_samples['weights'] = out.weights self.result.nested_samples['log_likelihood'] = out.logl - idxs = [np.unique(np.where(self.result.samples[ii] == out.samples)[0]) - for ii in range(len(out.logl))] - self.result.log_likelihood_evaluations = out.logl[idxs] + self.result.log_likelihood_evaluations = self.reorder_loglikelihoods( + unsorted_loglikelihoods=out.logl, unsorted_samples=out.samples, + sorted_samples=self.result.samples) self.result.log_evidence = out.logz self.result.log_evidence_err = out.logzerr return self.result