diff --git a/peyote/sampler.py b/peyote/sampler.py index 88734bc5ed70b6af5007f7a29ac6a271a60340a6..1726c13258ffee31792b020ab34c6464454a970f 100644 --- a/peyote/sampler.py +++ b/peyote/sampler.py @@ -77,10 +77,10 @@ class Sampler: self.external_sampler = None self.import_external_sampler() - self.fixed_parameters = self.prior.__dict__.copy() - del self.fixed_parameters['name'] - del self.fixed_parameters['frequency_array'] - del self.fixed_parameters['time_array'] + self.active_parameter_values = self.prior.__dict__.copy() + del self.active_parameter_values['name'] + del self.active_parameter_values['frequency_array'] + del self.active_parameter_values['time_array'] self.search_parameter_keys = [] self.ndim = 0 self.initialise_parameters() @@ -118,9 +118,9 @@ class Sampler: CC = getattr(p, 'is_fixed', False) is True if CA is False and CB and CC is False: self.search_parameter_keys.append(key) - self.fixed_parameters[key] = np.nan + self.active_parameter_values[key] = np.nan elif CC: - self.fixed_parameters[key] = p.value + self.active_parameter_values[key] = p.value else: try: self.prior[key] = getattr(peyote.parameter, key) @@ -149,10 +149,7 @@ class Sampler: def loglikelihood(self, theta): for i, k in enumerate(self.search_parameter_keys): - self.fixed_parameters[k] = theta[i] - print(self.search_parameter_keys) - print(self.fixed_parameters) - exit() + self.active_parameter_values[k] = theta[i] return self.likelihood.log_likelihood() def run_sampler(self):