diff --git a/bilby/core/result.py b/bilby/core/result.py index 97a42a267435881580d75bedf0c1c79448ac21b5..bb895090adc08c41de0bf30d171e0aa55e84a704 100644 --- a/bilby/core/result.py +++ b/bilby/core/result.py @@ -30,9 +30,9 @@ from .prior import Prior, PriorDict, DeltaFunction, ConditionalDeltaFunction EXTENSIONS = ["json", "hdf5", "h5", "pickle", "pkl"] -def __eval_l(l, p): - l.parameters.update(p) - return l.log_likelihood() +def __eval_l(likelihood, params): + likelihood.parameters.update(params) + return likelihood.log_likelihood() def result_file_name(outdir, label, extension='json', gzip=False): """ Returns the standard filename used for a result file @@ -153,18 +153,19 @@ def get_weights_for_reweighting( n = len(dict_samples) - starting_index # Helper function to compute likelihoods in parallel - def eval_pool(l): + def eval_pool(this_logl): with multiprocessing.Pool(processes=npool) as pool: chunksize = max(100,n//(2*npool)) return list(tqdm( - pool.imap(partial(__eval_l,l), + pool.imap(partial(__eval_l,this_logl), dict_samples[starting_index:], chunksize=chunksize), desc = 'Computing likelihoods', total = n )) if old_likelihood is None: - old_log_likelihood_array[starting_index:] = sample["log_likelihood"] + old_log_likelihood_array[starting_index:] = \ + result.posterior["log_likelihood"][starting_index:].to_numpy() else: old_log_likelihood_array[starting_index:] = eval_pool(old_likelihood)