From d2487431c1bb0e5ae667dff7afdc3c7b8c7c857a Mon Sep 17 00:00:00 2001
From: Marc Arene <arene.marc@gmail.com>
Date: Fri, 8 May 2020 21:56:48 -0500
Subject: [PATCH] Adding corner_labels input in plot_multiple to break
 ambiguity with existing labels input

---
 bilby/core/result.py | 10 ++++++++--
 1 file changed, 8 insertions(+), 2 deletions(-)

diff --git a/bilby/core/result.py b/bilby/core/result.py
index a35b13991..cadd5b68a 100644
--- a/bilby/core/result.py
+++ b/bilby/core/result.py
@@ -1525,7 +1525,7 @@ class ResultList(list):
 
 @latex_plot_format
 def plot_multiple(results, filename=None, labels=None, colours=None,
-                  save=True, evidences=False, **kwargs):
+                  save=True, evidences=False, corner_labels=None, **kwargs):
     """ Generate a corner plot overlaying two sets of results
 
     Parameters
@@ -1545,12 +1545,16 @@ def plot_multiple(results, filename=None, labels=None, colours=None,
     save: bool
         If true, save the figure
     kwargs: dict
-        All other keyword arguments are passed to `result.plot_corner`.
+        All other keyword arguments are passed to `result.plot_corner` (except
+        for the keyword `labels` for which you should use the dedicated
+        `corner_labels` input).
         However, `show_titles` and `truths` are ignored since they would be
         ambiguous on such a plot.
     evidences: bool, optional
         Add the log-evidence calculations to the legend. If available, the
         Bayes factor will be used instead.
+    corner_labels: list, optional
+        List of strings to be passed to the input `labels` to `result.plot_corner`.
 
     Returns
     -------
@@ -1561,6 +1565,8 @@ def plot_multiple(results, filename=None, labels=None, colours=None,
 
     kwargs['show_titles'] = False
     kwargs['truths'] = None
+    if corner_labels is not None:
+        kwargs['labels'] = corner_labels
 
     fig = results[0].plot_corner(save=False, **kwargs)
     default_filename = '{}/{}'.format(results[0].outdir, 'combined')
-- 
GitLab