diff --git a/examples/injection_examples/basic_tutorial.py b/examples/injection_examples/basic_tutorial.py index f9946da0039934f222a9072026a2f773c67d0ea1..0d5ede77386bc38853aba7ca63042967a5d51efb 100644 --- a/examples/injection_examples/basic_tutorial.py +++ b/examples/injection_examples/basic_tutorial.py @@ -29,10 +29,10 @@ injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5 waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375, dec=-1.2108) # Create the waveform_generator using a LAL BinaryBlackHole source function -waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration, - sampling_frequency=sampling_frequency, - frequency_domain_source_model=tupak.source.lal_binary_black_hole, - parameters=injection_parameters) +waveform_generator = tupak.WaveformGenerator(time_duration=time_duration, + sampling_frequency=sampling_frequency, + frequency_domain_source_model=tupak.source.lal_binary_black_hole, + parameters=injection_parameters) hf_signal = waveform_generator.frequency_domain_strain() # Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1), @@ -55,11 +55,11 @@ for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'phase', 'psi' priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance') # Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator -likelihood = tupak.likelihood.GravitationalWaveTransient(interferometers=IFOs, waveform_generator=waveform_generator) +likelihood = tupak.GravitationalWaveTransient(interferometers=IFOs, waveform_generator=waveform_generator) # Run sampler. In this case we're going to use the `dynesty` sampler -result = tupak.sampler.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label) +result = tupak.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, + injection_parameters=injection_parameters, outdir=outdir, label=label) # make some plots of the outputs result.plot_corner() diff --git a/examples/open_data_examples/GW150914.py b/examples/open_data_examples/GW150914.py index 56ea1cde47d0274b68c2088ccd79ca571937d5a2..49eb90fabb2277e21be44da9344011bf2110bba2 100644 --- a/examples/open_data_examples/GW150914.py +++ b/examples/open_data_examples/GW150914.py @@ -44,20 +44,19 @@ prior['luminosity_distance'] = tupak.prior.PowerLaw( # creates the frequency-domain strain. In this instance, we are using the # `lal_binary_black_hole model` source model. We also pass other parameters: # the waveform approximant and reference frequency. -waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=interferometers[0].duration, - sampling_frequency=interferometers[ - 0].sampling_frequency, - frequency_domain_source_model=tupak.source.lal_binary_black_hole, - parameters={'waveform_approximant': 'IMRPhenomPv2', - 'reference_frequency': 50}) +waveform_generator = tupak.WaveformGenerator(time_duration=interferometers[0].duration, + sampling_frequency=interferometers[0].sampling_frequency, + frequency_domain_source_model=tupak.source.lal_binary_black_hole, + parameters={'waveform_approximant': 'IMRPhenomPv2', + 'reference_frequency': 50}) # In this step, we define the likelihood. Here we use the standard likelihood # function, passing it the data and the waveform generator. -likelihood = tupak.likelihood.GravitationalWaveTransient(interferometers, waveform_generator) +likelihood = tupak.GravitationalWaveTransient(interferometers, waveform_generator) # Finally, we run the sampler. This function takes the likelihood and prio # along with some options for how to do the sampling and how to save the data -result = tupak.sampler.run_sampler(likelihood, prior, sampler='dynesty', - outdir=outdir, label=label) +result = tupak.run_sampler(likelihood, prior, sampler='dynesty', + outdir=outdir, label=label) result.plot_corner() print(result) diff --git a/examples/open_data_examples/GW150914_minimal.py b/examples/open_data_examples/GW150914_minimal.py index 606409387b622ffc583dff647af6bebd94b01603..7df645cbbd093c3856920a67cbbbbe05e632dd05 100644 --- a/examples/open_data_examples/GW150914_minimal.py +++ b/examples/open_data_examples/GW150914_minimal.py @@ -10,5 +10,5 @@ t0 = tupak.utils.get_event_time("GW150914") prior = dict(geocent_time=tupak.prior.Uniform(t0-0.1, t0+0.1, name='geocent_time')) interferometers = tupak.detector.get_event_data("GW150914") likelihood = tupak.likelihood.get_binary_black_hole_likelihood(interferometers) -result = tupak.sampler.run_sampler(likelihood, prior, label='GW150914') +result = tupak.run_sampler(likelihood, prior, label='GW150914') result.plot_corner() diff --git a/examples/other_examples/linear_regression.py b/examples/other_examples/linear_regression.py index 1aee5f0243bdee5180bc384c09aa70cfe83a950e..208e05b97e63f7168ccf5b30df7f79af7cde5105 100644 --- a/examples/other_examples/linear_regression.py +++ b/examples/other_examples/linear_regression.py @@ -55,7 +55,7 @@ fig.savefig('{}/{}_data.png'.format(outdir, label)) # our model. -class GaussianLikelihood(tupak.likelihood.Likelihood): +class GaussianLikelihood(tupak.Likelihood): def __init__(self, x, y, sigma, waveform_generator): """ @@ -91,7 +91,7 @@ class GaussianLikelihood(tupak.likelihood.Likelihood): # can generate a signal. We give it information on how to make the time series # and the model() we wrote earlier. -waveform_generator = tupak.waveform_generator.WaveformGenerator( +waveform_generator = tupak.WaveformGenerator( time_duration=time_duration, sampling_frequency=sampling_frequency, time_domain_source_model=model) @@ -106,7 +106,7 @@ priors['m'] = tupak.prior.Uniform(0, 5, 'm') priors['c'] = tupak.prior.Uniform(-2, 2, 'c') # And run sampler -result = tupak.sampler.run_sampler( +result = tupak.run_sampler( likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500, walks=10, injection_parameters=injection_parameters, outdir=outdir, label=label, plot=True) diff --git a/tupak/__init__.py b/tupak/__init__.py index 5716af07db5ea5e398f25e36ed030e502905e1f9..26003e316a429a19b505dbbadcfd6d5d7393920b 100644 --- a/tupak/__init__.py +++ b/tupak/__init__.py @@ -21,3 +21,8 @@ from . import waveform_generator from . import result from . import sampler from . import conversion + +# import a few oft-used functions and classes to simplify scripts +from likelihood import Likelihood, GravitationalWaveTransient +from waveform_generator import WaveformGenerator +from sampler import run_sampler