diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 6089160269d5ea613fae7036f8d4c1e480cab4f9..f426e45d175031e9f8654244aecb303c1d3fb16f 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -51,7 +51,7 @@ python-3.7:
     - flake8 .
 
     # Run tests and collect coverage data
-    - pytest --cov=bilby
+    - pytest --cov=bilby --durations 10
     - coverage html
     - coverage-badge -o coverage_badge.svg -f
 
@@ -75,10 +75,28 @@ python-3.6:
 
     - pytest
 
+# test samplers on python 3.7
+python-3.7-samplers:
+  stage: test
+  image: bilbydev/v2-dockerfile-test-suite-python37
+  script:
+    - python -m pip install .
+
+    - pytest test/sampler_test.py --durations 10
+
+# test samplers on python 3.6
+python-3.6-samplers:
+  stage: test
+  image: bilbydev/v2-dockerfile-test-suite-python36
+  script:
+    - python -m pip install .
+
+    - pytest test/sampler_test.py
+
 # Tests run at a fixed schedule rather than on push
 scheduled-python-3.7:
   stage: test
-  image: bilbydev/bilby-test-suite-python37
+  image: bilbydev/v2-dockerfile-test-suite-python37
   only:
     - schedules
   script:
@@ -104,3 +122,17 @@ pages:
     expire_in: 30 days
   only:
     - master
+
+deploy_release:
+  stage: deploy
+  image: bilbydev/v2-dockerfile-test-suite-python37
+  variables:
+    TWINE_USERNAME: $PYPI_USERNAME
+    TWINE_PASSWORD: $PYPI_PASSWORD
+  before_script:
+    - pip install twine
+    - python setup.py sdist
+  script:
+    - twine upload dist/*
+  only:
+  - tags
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 5fbd2aa5a933201df222ab0c94fc0ba8ff1a34f8..c69ba9b2dfbbabb1e1c734ce39257b7db1234690 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,5 +1,23 @@
 # All notable changes will be documented in this file
 
+## [0.6.5] 2020-02-14
+### Changes
+- Fix for time reconstruction bug (!714)
+- Resolved errors Waveform longer than the frequency array (!710)
+- Prior reading clean-up (!715)
+- More efficient dynesty restarting (!713)
+- PP tests show 123 sigma bounds by default (!726)
+
+### Added
+- HealPixPrior (!651)
+- GW prior documentation (!720)
+- Multiple contours to PP tests plots (!721) 
+- Distance marginalization for non-luminosity-distance parameters (!719)
+
+### Removed
+- Pipenv (!724)
+
+
 ## [0.6.4] 2020-01-30
 ### Changes
 - Discontinue python2.7 support (!697)
diff --git a/Pipfile b/Pipfile
deleted file mode 100644
index a543565eb9540cc24838229c8574a5ae778fd8d4..0000000000000000000000000000000000000000
--- a/Pipfile
+++ /dev/null
@@ -1,34 +0,0 @@
-[[source]]
-url = "https://pypi.org/simple"
-verify_ssl = true
-name = "pypi"
-
-[packages]
-future = "*"
-corner = "*"
-numpy = "==1.15.2"
-ligotimegps = "<=1.2.3"
-matplotlib = "<3"
-scipy = ">=0.16"
-pandas = "==0.23.0"
-deepdish = "==0.3.6"
-mock = "*"
-astropy = "<3"
-gwpy = "*"
-theano = "*"
-lalsuite = "*"
-dill = "*"
-
-# cpnest = "*"
-dynesty = "*"
-emcee = "*"
-nestle = "*"
-ptemcee = "*"
-pymc3 = "*"
-
-[requires]
-
-[dev-packages]
-
-[pipenv]
-allow_prereleases = false
diff --git a/Pipfile.lock b/Pipfile.lock
deleted file mode 100644
index add2830ca920575ab49a8200fa48a9b41e6928ce..0000000000000000000000000000000000000000
--- a/Pipfile.lock
+++ /dev/null
@@ -1,619 +0,0 @@
-{
-    "_meta": {
-        "hash": {
-            "sha256": "eb20a6f752cbf495151f478087441410ee5bb4eb3a064f72f5a31aec85c1032d"
-        },
-        "pipfile-spec": 6,
-        "requires": {},
-        "sources": [
-            {
-                "name": "pypi",
-                "url": "https://pypi.org/simple",
-                "verify_ssl": true
-            }
-        ]
-    },
-    "default": {
-        "asn1crypto": {
-            "hashes": [
-                "sha256:2f1adbb7546ed199e3c90ef23ec95c5cf3585bac7d11fb7eb562a3fe89c64e87",
-                "sha256:9d5c20441baf0cb60a4ac34cc447c6c189024b6b4c6cd7877034f4965c464e49"
-            ],
-            "version": "==0.24.0"
-        },
-        "astropy": {
-            "hashes": [
-                "sha256:0836c2b08496e98859551fc3f82f78a24276a67d8da2a8a606dbc8d1e438c136",
-                "sha256:0b57d343f898fc0d0b9f1f63cc23c0d9f32a4c6ffa326f2bdcd1a15de63ad468",
-                "sha256:0f234986be6e4717eab9a1a67e72686665c22e8d2b9dde6731260a4e660943f8",
-                "sha256:10091619a67c17824821426deaa8eef0d70b37ecfd99add8bd5ed059783071ed",
-                "sha256:2b01d9c8972d2c1b103364bfc3a2a005d0ce09cd28ba96659f5cef3907141953",
-                "sha256:314ed424551a06cc466ca5f6f0105daed6d5dfc32fce752e4ccd7b505ddb74ed",
-                "sha256:322c05aa8bd7f371ff43e9aebca88a425ca9b6787fbda433bd32c540cc77cb75",
-                "sha256:46c07a8893c6be3c6d0cc5aa3d9003614af2c416042f22475779839181d98b42",
-                "sha256:5fcb553002f2782c9cb0e738813d2758c9c027b29cb1f1ea72c8d82ef8dbb467",
-                "sha256:64caa0955f3c09686103faeae04c77162513b80df1258d500e04d7426dafaf07",
-                "sha256:6abde36755f9aa46d972fe3868030f0388edaaae420f0640bc2902e18870fe56",
-                "sha256:7a11b9b35b9309832b991f74ea0eef95bc4f0288255df7ac2da26e7f654ee697",
-                "sha256:81bae35320d7c72ae8569eeabc596e3a5ed416249b3fb2de9b40f30673085d0b",
-                "sha256:98d59d9faf8c7a766b7da1e2741c7d7b7b72107588d94b0811f306245bd66c49",
-                "sha256:b39db24461e25a7711cbf491ca83defe5bc67d88d3b62649fbc2bfce245db0f4",
-                "sha256:b981ca97ce0b8ac32fdb7d8ee0a72bea1fe528104542c29a763b3da4ff137e40",
-                "sha256:ba0f47ebf6b922a9a3e8d5c66c9fdc3d2a03fdcfe9d2a4dd4d89f91880fcf3c8",
-                "sha256:bdf62bb686bb26cfc972bbb3b6d9760d7dbf56f6c30960987de73d45b50479ff",
-                "sha256:c813f5f3fe2b51621a0ec1d7d61fb6049a36c7bba53cadb91a987e28fc290444",
-                "sha256:cd7aeced7fbfad6d6b5f5f88aa1055a24e5a3aa8874b3c7dd9cd655c6d9578ab",
-                "sha256:d85727d114c6d0fd1a3ab9b9e59c60500c7f2bd47637ec88e81f9f690c178001",
-                "sha256:dd40c7e782c6f91584fb75a589c54d332ad80011b43e150dc8f5ff15e6317e71",
-                "sha256:f3f8f7b3832288bec74f1937791d75386879a23da5c21de33739138990cf6bd2"
-            ],
-            "index": "pypi",
-            "version": "==2.0.12"
-        },
-        "atomicwrites": {
-            "hashes": [
-                "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4",
-                "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6"
-            ],
-            "version": "==1.3.0"
-        },
-        "attrs": {
-            "hashes": [
-                "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79",
-                "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399"
-            ],
-            "version": "==19.1.0"
-        },
-        "cffi": {
-            "hashes": [
-                "sha256:00b97afa72c233495560a0793cdc86c2571721b4271c0667addc83c417f3d90f",
-                "sha256:0ba1b0c90f2124459f6966a10c03794082a2f3985cd699d7d63c4a8dae113e11",
-                "sha256:0bffb69da295a4fc3349f2ec7cbe16b8ba057b0a593a92cbe8396e535244ee9d",
-                "sha256:21469a2b1082088d11ccd79dd84157ba42d940064abbfa59cf5f024c19cf4891",
-                "sha256:2e4812f7fa984bf1ab253a40f1f4391b604f7fc424a3e21f7de542a7f8f7aedf",
-                "sha256:2eac2cdd07b9049dd4e68449b90d3ef1adc7c759463af5beb53a84f1db62e36c",
-                "sha256:2f9089979d7456c74d21303c7851f158833d48fb265876923edcb2d0194104ed",
-                "sha256:3dd13feff00bddb0bd2d650cdb7338f815c1789a91a6f68fdc00e5c5ed40329b",
-                "sha256:4065c32b52f4b142f417af6f33a5024edc1336aa845b9d5a8d86071f6fcaac5a",
-                "sha256:51a4ba1256e9003a3acf508e3b4f4661bebd015b8180cc31849da222426ef585",
-                "sha256:59888faac06403767c0cf8cfb3f4a777b2939b1fbd9f729299b5384f097f05ea",
-                "sha256:59c87886640574d8b14910840327f5cd15954e26ed0bbd4e7cef95fa5aef218f",
-                "sha256:610fc7d6db6c56a244c2701575f6851461753c60f73f2de89c79bbf1cc807f33",
-                "sha256:70aeadeecb281ea901bf4230c6222af0248c41044d6f57401a614ea59d96d145",
-                "sha256:71e1296d5e66c59cd2c0f2d72dc476d42afe02aeddc833d8e05630a0551dad7a",
-                "sha256:8fc7a49b440ea752cfdf1d51a586fd08d395ff7a5d555dc69e84b1939f7ddee3",
-                "sha256:9b5c2afd2d6e3771d516045a6cfa11a8da9a60e3d128746a7fe9ab36dfe7221f",
-                "sha256:9c759051ebcb244d9d55ee791259ddd158188d15adee3c152502d3b69005e6bd",
-                "sha256:b4d1011fec5ec12aa7cc10c05a2f2f12dfa0adfe958e56ae38dc140614035804",
-                "sha256:b4f1d6332339ecc61275bebd1f7b674098a66fea11a00c84d1c58851e618dc0d",
-                "sha256:c030cda3dc8e62b814831faa4eb93dd9a46498af8cd1d5c178c2de856972fd92",
-                "sha256:c2e1f2012e56d61390c0e668c20c4fb0ae667c44d6f6a2eeea5d7148dcd3df9f",
-                "sha256:c37c77d6562074452120fc6c02ad86ec928f5710fbc435a181d69334b4de1d84",
-                "sha256:c8149780c60f8fd02752d0429246088c6c04e234b895c4a42e1ea9b4de8d27fb",
-                "sha256:cbeeef1dc3c4299bd746b774f019de9e4672f7cc666c777cd5b409f0b746dac7",
-                "sha256:e113878a446c6228669144ae8a56e268c91b7f1fafae927adc4879d9849e0ea7",
-                "sha256:e21162bf941b85c0cda08224dade5def9360f53b09f9f259adb85fc7dd0e7b35",
-                "sha256:fb6934ef4744becbda3143d30c6604718871495a5e36c408431bf33d9c146889"
-            ],
-            "version": "==1.12.2"
-        },
-        "corner": {
-            "hashes": [
-                "sha256:102e22797ee75d1432b6dc66aa2850f61388996ece66fd6600508742d2a7b88f"
-            ],
-            "index": "pypi",
-            "version": "==2.0.1"
-        },
-        "cryptography": {
-            "hashes": [
-                "sha256:066f815f1fe46020877c5983a7e747ae140f517f1b09030ec098503575265ce1",
-                "sha256:210210d9df0afba9e000636e97810117dc55b7157c903a55716bb73e3ae07705",
-                "sha256:26c821cbeb683facb966045e2064303029d572a87ee69ca5a1bf54bf55f93ca6",
-                "sha256:2afb83308dc5c5255149ff7d3fb9964f7c9ee3d59b603ec18ccf5b0a8852e2b1",
-                "sha256:2db34e5c45988f36f7a08a7ab2b69638994a8923853dec2d4af121f689c66dc8",
-                "sha256:409c4653e0f719fa78febcb71ac417076ae5e20160aec7270c91d009837b9151",
-                "sha256:45a4f4cf4f4e6a55c8128f8b76b4c057027b27d4c67e3fe157fa02f27e37830d",
-                "sha256:48eab46ef38faf1031e58dfcc9c3e71756a1108f4c9c966150b605d4a1a7f659",
-                "sha256:6b9e0ae298ab20d371fc26e2129fd683cfc0cfde4d157c6341722de645146537",
-                "sha256:6c4778afe50f413707f604828c1ad1ff81fadf6c110cb669579dea7e2e98a75e",
-                "sha256:8c33fb99025d353c9520141f8bc989c2134a1f76bac6369cea060812f5b5c2bb",
-                "sha256:9873a1760a274b620a135054b756f9f218fa61ca030e42df31b409f0fb738b6c",
-                "sha256:9b069768c627f3f5623b1cbd3248c5e7e92aec62f4c98827059eed7053138cc9",
-                "sha256:9e4ce27a507e4886efbd3c32d120db5089b906979a4debf1d5939ec01b9dd6c5",
-                "sha256:acb424eaca214cb08735f1a744eceb97d014de6530c1ea23beb86d9c6f13c2ad",
-                "sha256:c8181c7d77388fe26ab8418bb088b1a1ef5fde058c6926790c8a0a3d94075a4a",
-                "sha256:d4afbb0840f489b60f5a580a41a1b9c3622e08ecb5eec8614d4fb4cd914c4460",
-                "sha256:d9ed28030797c00f4bc43c86bf819266c76a5ea61d006cd4078a93ebf7da6bfd",
-                "sha256:e603aa7bb52e4e8ed4119a58a03b60323918467ef209e6ff9db3ac382e5cf2c6"
-            ],
-            "version": "==2.6.1"
-        },
-        "cycler": {
-            "hashes": [
-                "sha256:1d8a5ae1ff6c5cf9b93e8811e581232ad8920aeec647c37316ceac982b08cb2d",
-                "sha256:cd7b2d1018258d7247a71425e9f26463dfb444d411c39569972f4ce586b0c9d8"
-            ],
-            "version": "==0.10.0"
-        },
-        "deepdish": {
-            "hashes": [
-                "sha256:2b1d3d2a32356909f2618c382a1829347990ad81b63aaecc87b35a046cd3034c",
-                "sha256:7858b674ef15ee79828de4892dadd2f58773ead527f3a62aaf1e8ce5a595a074"
-            ],
-            "index": "pypi",
-            "version": "==0.3.6"
-        },
-        "dill": {
-            "hashes": [
-                "sha256:f6d6046f9f9195206063dd0415dff185ad593d6ee8b0e67f12597c0f4df4986f"
-            ],
-            "index": "pypi",
-            "version": "==0.2.9"
-        },
-        "dqsegdb2": {
-            "hashes": [
-                "sha256:51bbe3fc6adf1ca7bb06305dfc684a9f45de96db67c6003eecff1ab26dd8dcc5",
-                "sha256:f6fb79a80fc5df47672468f914da38c0ea35e8ba78fb247b756769a033f7b961"
-            ],
-            "version": "==1.0.1"
-        },
-        "dynesty": {
-            "hashes": [
-                "sha256:46086e582353433f9bd2257210bdfc6d09e011827c4a201ea7853f7d870ab395",
-                "sha256:eb9aed4f856d084551e54e9939e295f50d232e089286c8d93954afe443cb37d8"
-            ],
-            "index": "pypi",
-            "version": "==0.9.5.3"
-        },
-        "emcee": {
-            "hashes": [
-                "sha256:b83551e342b37311897906b3b8acf32979f4c5542e0a25786ada862d26241172"
-            ],
-            "index": "pypi",
-            "version": "==2.2.1"
-        },
-        "future": {
-            "hashes": [
-                "sha256:67045236dcfd6816dc439556d009594abf643e5eb48992e36beac09c2ca659b8"
-            ],
-            "index": "pypi",
-            "version": "==0.17.1"
-        },
-        "gwdatafind": {
-            "hashes": [
-                "sha256:3b7b586a2fbe87dc3867c38699c50ad8028f8403a6689b21ac6229e0ac127492",
-                "sha256:5ab0fb818b22a9f10064cfa072967727a8072d7f7d0a3b96c83907e8ce7bd5b6"
-            ],
-            "version": "==1.0.4"
-        },
-        "gwosc": {
-            "hashes": [
-                "sha256:7fb8a7bc76c69329c9d8252c523a212bf6ecdfbe6bcdd940652efa60c6e85a8a",
-                "sha256:f707bdc3b3f9fd6b8b2dceabe770b2fec6a488a1f57b8edc91089d8dac9bf5e3"
-            ],
-            "version": "==0.4.3"
-        },
-        "gwpy": {
-            "hashes": [
-                "sha256:28160c9ceef57c61e5feee171db38f61101175817963061b4f2e097560802468",
-                "sha256:45c4f124cc43d8284520b73f3c35ca571221a00fe3953dd34714d0b859ffd820"
-            ],
-            "index": "pypi",
-            "version": "==0.14.2"
-        },
-        "h5py": {
-            "hashes": [
-                "sha256:05750b91640273c69989c657eaac34b091abdd75efc8c4824c82aaf898a2da0a",
-                "sha256:082a27208aa3a2286e7272e998e7e225b2a7d4b7821bd840aebf96d50977abbb",
-                "sha256:08e2e8297195f9e813e894b6c63f79372582787795bba2014a2db6a2de95f713",
-                "sha256:0dd2adeb2e9de5081eb8dcec88874e7fd35dae9a21557be3a55a3c7d491842a4",
-                "sha256:0f94de7a10562b991967a66bbe6dda9808e18088676834c0a4dcec3fdd3bcc6f",
-                "sha256:106e42e2e01e486a3d32eeb9ba0e3a7f65c12fa8998d63625fa41fb8bdc44cdb",
-                "sha256:1606c66015f04719c41a9863c156fc0e6b992150de21c067444bcb82e7d75579",
-                "sha256:1854c4beff9961e477e133143c5e5e355dac0b3ebf19c52cf7cc1b1ef757703c",
-                "sha256:1e9fb6f1746500ea91a00193ce2361803c70c6b13f10aae9a33ad7b5bd28e800",
-                "sha256:2cca17e80ddb151894333377675db90cd0279fa454776e0a4f74308376afd050",
-                "sha256:30e365e8408759db3778c361f1e4e0fe8e98a875185ae46c795a85e9bafb9cdf",
-                "sha256:3206bac900e16eda81687d787086f4ffd4f3854980d798e191a9868a6510c3ae",
-                "sha256:3c23d72058647cee19b30452acc7895621e2de0a0bd5b8a1e34204b9ea9ed43c",
-                "sha256:407b5f911a83daa285bbf1ef78a9909ee5957f257d3524b8606be37e8643c5f0",
-                "sha256:4162953714a9212d373ac953c10e3329f1e830d3c7473f2a2e4f25dd6241eef0",
-                "sha256:5fc7aba72a51b2c80605eba1c50dbf84224dcd206279d30a75c154e5652e1fe4",
-                "sha256:713ac19307e11de4d9833af0c4bd6778bde0a3d967cafd2f0f347223711c1e31",
-                "sha256:71b946d80ef3c3f12db157d7778b1fe74a517ca85e94809358b15580983c2ce2",
-                "sha256:8cc4aed71e20d87e0a6f02094d718a95252f11f8ed143bc112d22167f08d4040",
-                "sha256:9d41ca62daf36d6b6515ab8765e4c8c4388ee18e2a665701fef2b41563821002",
-                "sha256:a744e13b000f234cd5a5b2a1f95816b819027c57f385da54ad2b7da1adace2f3",
-                "sha256:b087ee01396c4b34e9dc41e3a6a0442158206d383c19c7d0396d52067b17c1cb",
-                "sha256:b0f03af381d33306ce67d18275b61acb4ca111ced645381387a02c8a5ee1b796",
-                "sha256:b9e4b8dfd587365bdd719ae178fa1b6c1231f81280b1375eef8626dfd8761bf3",
-                "sha256:c5dd4ec75985b99166c045909e10f0534704d102848b1d9f0992720e908928e7",
-                "sha256:d2b82f23cd862a9d05108fe99967e9edfa95c136f532a71cb3d28dc252771f50",
-                "sha256:e58a25764472af07b7e1c4b10b0179c8ea726446c7141076286e41891bf3a563",
-                "sha256:f3b49107fbfc77333fc2b1ef4d5de2abcd57e7ea3a1482455229494cf2da56ce"
-            ],
-            "version": "==2.9.0"
-        },
-        "joblib": {
-            "hashes": [
-                "sha256:11cdfd38cdb71768149e1373f2509e9b4fc1ec6bc92f874cb515b25f2d69f8f4",
-                "sha256:142e74bee7b9dfad75c7dad24c4295b9084a6788116dd149e2fc7daf0db25675"
-            ],
-            "version": "==0.12.5"
-        },
-        "kiwisolver": {
-            "hashes": [
-                "sha256:0ee4ed8b3ae8f5f712b0aa9ebd2858b5b232f1b9a96b0943dceb34df2a223bc3",
-                "sha256:0f7f532f3c94e99545a29f4c3f05637f4d2713e7fd91b4dd8abfc18340b86cd5",
-                "sha256:1a078f5dd7e99317098f0e0d490257fd0349d79363e8c923d5bb76428f318421",
-                "sha256:1aa0b55a0eb1bd3fa82e704f44fb8f16e26702af1a073cc5030eea399e617b56",
-                "sha256:2874060b91e131ceeff00574b7c2140749c9355817a4ed498e82a4ffa308ecbc",
-                "sha256:379d97783ba8d2934d52221c833407f20ca287b36d949b4bba6c75274bcf6363",
-                "sha256:3b791ddf2aefc56382aadc26ea5b352e86a2921e4e85c31c1f770f527eb06ce4",
-                "sha256:4329008a167fac233e398e8a600d1b91539dc33c5a3eadee84c0d4b04d4494fa",
-                "sha256:45813e0873bbb679334a161b28cb9606d9665e70561fd6caa8863e279b5e464b",
-                "sha256:53a5b27e6b5717bdc0125338a822605084054c80f382051fb945d2c0e6899a20",
-                "sha256:574f24b9805cb1c72d02b9f7749aa0cc0b81aa82571be5201aa1453190390ae5",
-                "sha256:66f82819ff47fa67a11540da96966fb9245504b7f496034f534b81cacf333861",
-                "sha256:79e5fe3ccd5144ae80777e12973027bd2f4f5e3ae8eb286cabe787bed9780138",
-                "sha256:83410258eb886f3456714eea4d4304db3a1fc8624623fc3f38a487ab36c0f653",
-                "sha256:8b6a7b596ce1d2a6d93c3562f1178ebd3b7bb445b3b0dd33b09f9255e312a965",
-                "sha256:9576cb63897fbfa69df60f994082c3f4b8e6adb49cccb60efb2a80a208e6f996",
-                "sha256:95a25d9f3449046ecbe9065be8f8380c03c56081bc5d41fe0fb964aaa30b2195",
-                "sha256:a424f048bebc4476620e77f3e4d1f282920cef9bc376ba16d0b8fe97eec87cde",
-                "sha256:aaec1cfd94f4f3e9a25e144d5b0ed1eb8a9596ec36d7318a504d813412563a85",
-                "sha256:acb673eecbae089ea3be3dcf75bfe45fc8d4dcdc951e27d8691887963cf421c7",
-                "sha256:b15bc8d2c2848a4a7c04f76c9b3dc3561e95d4dabc6b4f24bfabe5fd81a0b14f",
-                "sha256:b1c240d565e977d80c0083404c01e4d59c5772c977fae2c483f100567f50847b",
-                "sha256:c595693de998461bcd49b8d20568c8870b3209b8ea323b2a7b0ea86d85864694",
-                "sha256:ce3be5d520b4d2c3e5eeb4cd2ef62b9b9ab8ac6b6fedbaa0e39cdb6f50644278",
-                "sha256:e0f910f84b35c36a3513b96d816e6442ae138862257ae18a0019d2fc67b041dc",
-                "sha256:ea36e19ac0a483eea239320aef0bd40702404ff8c7e42179a2d9d36c5afcb55c",
-                "sha256:efabbcd4f406b532206b8801058c8bab9e79645b9880329253ae3322b7b02cd5",
-                "sha256:f923406e6b32c86309261b8195e24e18b6a8801df0cfc7814ac44017bfcb3939"
-            ],
-            "version": "==1.0.1"
-        },
-        "lalsuite": {
-            "hashes": [
-                "sha256:20b167494933c1b9f7780ef4eaadda5382d0c7e794f2173ee3f59dc7f471635b",
-                "sha256:4b3b77d1cbe7b9e30db8d4cac3d08daf7de3d62ed516f3d7852dcbb52945c769",
-                "sha256:6ed64d24ba66e48bfbf72073299d01eb67e20a9787ad7e7f7f55f275acfccc84",
-                "sha256:714319e1926252cc7a932401bedc607ccea4ea595ca2a9e0e53a3bd13398ad62",
-                "sha256:99ca89d95ca518e2fdf2ba6681fed6d09ab89cde88333755ef48b4ce20064ca0",
-                "sha256:9c84ddc2e19187a2f2e8a463298a0168b634e6af484557fdb15f7d6940063713",
-                "sha256:ae280692119f3d13170e25acc13d521e592763100dd1aa61d230e367ca0d2a9d",
-                "sha256:b16136a0532fd6c05490e100577621259d99c189c5f589bbc14aaeba157c173f",
-                "sha256:c051c77a8f03994414f10445269254c6e0a01df30f560c4d06c0f4d72c06d6d5",
-                "sha256:f663d2811f16d8ebe93baacde46337b844cb88c95434b11c45b2151de1db9a83"
-            ],
-            "index": "pypi",
-            "version": "==6.53"
-        },
-        "ligo-segments": {
-            "hashes": [
-                "sha256:5edbcb88cae007c4e154a61cb2c9d0a6d6d4016c1ecaf0a59a667a267bd20e7a"
-            ],
-            "version": "==1.2.0"
-        },
-        "ligotimegps": {
-            "hashes": [
-                "sha256:48a8bd249e1822ddb484e4e59477654c333d1fe7d6b0de37249b2dcae72c5c99",
-                "sha256:79ee18df7f6806d522f68d278b0ac426094626a479af58c178f32d2b319919ba"
-            ],
-            "index": "pypi",
-            "version": "==1.2.3"
-        },
-        "lscsoft-glue": {
-            "hashes": [
-                "sha256:9bdfaebe4c921d83d1e3d1ca24379a644665e9d7530e7070665f387767c66923"
-            ],
-            "version": "==2.0.0"
-        },
-        "matplotlib": {
-            "hashes": [
-                "sha256:029620799e581802961ac1dcff5cb5d3ee2f602e0db9c0f202a90495b37d2126",
-                "sha256:2308f67e085735ed580fcace652339cb517f059cdc9ee8a418c1b55746dbffcb",
-                "sha256:280aebaec25575e35bf7d1b3ebb2d8ae7e839edb5a403f1a121b7271744b1ef9",
-                "sha256:295099acb5a8a1148d1b4693ad1a93479a20836cd8b7eb38183a98c84cdcb2f1",
-                "sha256:75d44c55eb87af653afc3d0a37ab62ab4784c752be0e7c96622713d88ed57e64",
-                "sha256:95d9d7c2d7f0c7a4317acbcf1a81efa0a2ce5cb5ddfad606ae4c25a783431f0a",
-                "sha256:9703ffc3e7e369f3ab31d0032719710876cb341eb618e1a8a54447e1946a9f0a",
-                "sha256:9ff80541d5676207c6e829632b28e22d9875ecaae54eab7a7f8fd82a6552e5e9",
-                "sha256:a6a04ebd81b3183e7882c9047a9514b7f547b2bae5e4f61a02eaaa6b446bde54",
-                "sha256:b22b0d3b8d8f769c6ac559f6761878d660bd23d67b36430f07161caf1505c29c",
-                "sha256:b464d598e36e13f7d798443805f2ba6b4af3d26fc1652c51c77a7847cf665813",
-                "sha256:c0fa162920185d5d74e6fdf52c1f8cca0fbf897025a9dd81e030cf08a915865a",
-                "sha256:c452b7aff0a9e4612670a4590e6efc30929dad620a121d423c8f3d0bd93715e2",
-                "sha256:c90fc796e97815ea3bbbdea63c1e4edf75336361a49b945fdbc2aff1c76008c6",
-                "sha256:cc1d376963ea9c97338582f3f9d64757c51e71cf2655efe363a3f2414d84aac2",
-                "sha256:d3f5dfaa345539599308bd83826db242e424e3f4e9657952f8738ce1b5b90e8a",
-                "sha256:d9e80ba0ffdb0daacaf49e561474d5c5c153d6db853478cf90c8cba5ed8b72b1",
-                "sha256:daac44fc77cf36ff01953e2acc57a843fb1f6572eb5bf0af10a2930fa7407715",
-                "sha256:de43c85335d71094a254e8538719752e30db3305005dae8dcb3097b72587ed07",
-                "sha256:e4621af28a2444f93b5b6d3d60f54767df8ac6daa510a98f68c34377cb474869",
-                "sha256:f3755a52aae7fb640f5f57b7b63eb5d65688c84931d7833dbc7d03959cd4f8ce",
-                "sha256:f99c43df8ed2b9d1c95a042f3cacf017f9690092feba0b4292eaa6713f92de97"
-            ],
-            "index": "pypi",
-            "version": "==2.2.4"
-        },
-        "mock": {
-            "hashes": [
-                "sha256:5ce3c71c5545b472da17b72268978914d0252980348636840bd34a00b5cc96c1",
-                "sha256:b158b6df76edd239b8208d481dc46b6afd45a846b7812ff0ce58971cf5bc8bba"
-            ],
-            "index": "pypi",
-            "version": "==2.0.0"
-        },
-        "more-itertools": {
-            "hashes": [
-                "sha256:2112d2ca570bb7c3e53ea1a35cd5df42bb0fd10c45f0fb97178679c3c03d64c7",
-                "sha256:c3e4748ba1aad8dba30a4886b0b1a2004f9a863837b8654e7059eebf727afa5a"
-            ],
-            "version": "==7.0.0"
-        },
-        "nestle": {
-            "hashes": [
-                "sha256:5de798feebbc122b3680e2a1c916ec09934e3afc6171d220de2914ca31c3246d"
-            ],
-            "index": "pypi",
-            "version": "==0.2.0"
-        },
-        "numexpr": {
-            "hashes": [
-                "sha256:066d7202d3374d42203ce8ba2b007f14397fd083946abafebbc962215ead1759",
-                "sha256:08196ac987324dc02147abcf1883b192aa5cd1a56a07c725310f1d0d703d5301",
-                "sha256:37b04292cbb1e20bfb3428d5aeebe2bdd13368d458e508998087e40b68d8cc95",
-                "sha256:426053be016a3584a10cae13f18692938ff7314988f69edd367b4ff60b370b5b",
-                "sha256:47c205a2bca8477eaaa766ca2b86001ca0df4b61ae407196a3ba2420932b5dca",
-                "sha256:4b65fe1b4565ccaab7a3617da1bd046987fb7dbc0bbe34e56aa08b05857259d1",
-                "sha256:5839cd5f95b4088659cc5f6d25936c6a03a75c23be37f94a2885db0f6f234531",
-                "sha256:5fe05f123e00170370c759734c395e5a4ae0ad4e6a3d370fd73e0dcd6669e665",
-                "sha256:62d2853df0233fc04374679de20f39b93fdb7a664a0ee403fdb8e722328c5d4d",
-                "sha256:688a25cfcd7be6fcce3f6d59fffca6105541e7a1598144b545b633a266e94113",
-                "sha256:6a0470a6c07eaa6aa27affb9ee89ce91070747e44172870b020fd3ebe318950a",
-                "sha256:6b70a0c372bb567ddb3039d046cccede284cee2a43688010a4110f6b2fe59421",
-                "sha256:7f4e121bd59f3b5f7bbd9ca8873c815277c4994b22cfff8a7d57bdef9d00e939",
-                "sha256:8213a3e84f3afadc0a4ab1fc0dab383482297f36dbf84b690bbe698b9b8c2ece",
-                "sha256:97920e6c37553571ce55f951080d9e2b28589c1337c3788b5ae66dae3a0131d2",
-                "sha256:9992ef8b9598a62364d46d4cb2f0f6285f4c77115f023dca821a50550044d8fc",
-                "sha256:9c6b4dfcc978ad50a72f83fbaf0fe4706088f3b2623e365bc05036db4948e15d",
-                "sha256:9ef58b5f8debcf0c573968f44709866210696aa476b0d22d9afe88da2bd70add",
-                "sha256:a64bfd49359df8f87c34ed601ce857213d8678e314d8c99b972b36e35ff8f98f",
-                "sha256:aa5b238af8f2915b39374d764ec0daa3d0a975a798f162c3ca30f1cd9fa9a274",
-                "sha256:ae5c73f7412b7e70c88f6b384ad61e123d909b0c81a8d5edd33239eb9b5b3111",
-                "sha256:c3850466765b9b374ff2ff40974a7b4b278b875f94314e038043f534aff8e139",
-                "sha256:e99213c7fa5ffd5572afe065bab7a8507d750221e3fbba43fc15151056d108a1",
-                "sha256:eac513cd2424c5f1b2c75bcb06402da407d74bb6f72584d599218228060c2468",
-                "sha256:ecb0d0a1ac843f2b8c7afdc0c3ec4fcfcc275bbd0750065cc4112fcd14904c90",
-                "sha256:ed96bc38a37fc34406ef76595235e5966d7d3a4123018e9a91d1b7307b4af425",
-                "sha256:ee4c526517d89f92c9b9f9c1937ab15c9e3d33864213b4488e1dd30fbc43c87f",
-                "sha256:fc218b777cdbb14fa8cff8f28175ee631bacabbdd41ca34e061325b6c44a6fa6"
-            ],
-            "version": "==2.6.9"
-        },
-        "numpy": {
-            "hashes": [
-                "sha256:1b1cf8f7300cf7b11ddb4250b3898c711a6187df05341b5b7153db23ffe5d498",
-                "sha256:27a0d018f608a3fe34ac5e2b876f4c23c47e38295c47dd0775cc294cd2614bc1",
-                "sha256:3fde172e28c899580d32dc21cb6d4a1225d62362f61050b654545c662eac215a",
-                "sha256:497d7c86df4f85eb03b7f58a7dd0f8b948b1f582e77629341f624ba301b4d204",
-                "sha256:4e28e66cf80c09a628ae680efeb0aa9a066eb4bb7db2a5669024c5b034891576",
-                "sha256:58be95faf0ca2d886b5b337e7cba2923e3ad1224b806a91223ea39f1e0c77d03",
-                "sha256:5b4dfb6551eaeaf532054e2c6ef4b19c449c2e3a709ebdde6392acb1372ecabc",
-                "sha256:63f833a7c622e9082df3cbaf03b4fd92d7e0c11e2f9d87cb57dbf0e84441964b",
-                "sha256:71bf3b7ca15b1967bba3a1ef6a8e87286382a8b5e46ac76b42a02fe787c5237d",
-                "sha256:733dc5d47e71236263837825b69c975bc08728ae638452b34aeb1d6fa347b780",
-                "sha256:82f00a1e2695a0e5b89879aa25ea614530b8ebdca6d49d4834843d498e8a5e92",
-                "sha256:866bf72b9c3bfabe4476d866c70ee1714ad3e2f7b7048bb934892335e7b6b1f7",
-                "sha256:8aeac8b08f4b8c52129518efcd93706bb6d506ccd17830b67d18d0227cf32d9e",
-                "sha256:8d2cfb0aef7ec8759736cce26946efa084cdf49797712333539ef7d135e0295e",
-                "sha256:981224224bbf44d95278eb37996162e8beb6f144d2719b144e86dfe2fce6c510",
-                "sha256:981daff58fa3985a26daa4faa2b726c4e7a1d45178100125c0e1fdaf2ac64978",
-                "sha256:9ad36dbfdbb0cba90a08e7343fadf86f43cf6d87450e8d2b5d71d7c7202907e4",
-                "sha256:a251570bb3cb04f1627f23c234ad09af0e54fc8194e026cf46178f2e5748d647",
-                "sha256:b5ff7dae352fd9e1edddad1348698e9fea14064460a7e39121ef9526745802e6",
-                "sha256:c898f9cca806102fcacb6309899743aa39efb2ad2a302f4c319f54db9f05cd84",
-                "sha256:cf4b970042ce148ad8dce4369c02a4078b382dadf20067ce2629c239d76460d1",
-                "sha256:d1569013e8cc8f37e9769d19effdd85e404c976cd0ca28a94e3ddc026c216ae8",
-                "sha256:dca261e85fe0d34b2c242ecb31c9ab693509af2cf955d9caf01ee3ef3669abd0",
-                "sha256:ec8bf53ef7c92c99340972519adbe122e82c81d5b87cbd955c74ba8a8cd2a4ad",
-                "sha256:f2e55726a9ee2e8129d6ce6abb466304868051bcc7a09d652b3b07cd86e801a2",
-                "sha256:f4dee74f2626c783a3804df9191e9008946a104d5a284e52427a53ff576423cb",
-                "sha256:f592fd7fe1f20b5041928cce1330937eca62f9058cb41e69c2c2d83cffc0d1e3",
-                "sha256:ffab5b80bba8c86251291b8ce2e6c99a61446459d4c6637f5d5cc8c9ce37c972"
-            ],
-            "index": "pypi",
-            "version": "==1.15.2"
-        },
-        "pandas": {
-            "hashes": [
-                "sha256:295cf212054b28f1d111f3ffff932a012601558424ec892f2450d6197f6eeb92",
-                "sha256:29960ea1783c59fe86b323799b130592149e0f7bb739149e7fc512b0272d9fc3",
-                "sha256:29dde0874d1efb8a346f8d919b0530a9ae788ad1003752376133e38df09e6fcb",
-                "sha256:2d6b7b152a6ba44627c60df291f773c4438df01653abcbec7fc556d6039f1705",
-                "sha256:5de7275fc7222211dcac603ea81f1e143c45f8ec41d2e21df71aad0c95c1097c",
-                "sha256:7261b3567804a70714cc2591e2f7f1e372379db9e140f9d7ffb4b8884eaa48f7",
-                "sha256:758b8f6c68bc99b2eb64e57092d3aa07bd68a774e92e7686e473e0d9c86a2309",
-                "sha256:835c5a2aeaa3cb5ef2a1d771c75ee3a73d6ad1b82cfc54677c8f863c75fa51bd",
-                "sha256:8398d7a47ae667a639ac4ee6724d7ef98602b5ff2b10b5b4d5e6ab45a8d596d2",
-                "sha256:84ab1d50590cb2d9554211f164dc1b1a216bc94da2ba922aed2690c83f248fd9",
-                "sha256:98054c04318ba46bb81433230c2e5fab6a68df916ccb5355d428907bfb16b257",
-                "sha256:9e5ee41d1550ec36093c95e30644e313df4b57c1cdead545754d9c113aecbbb5",
-                "sha256:d4495aba61060d87c634fc777ac15aecd1d176987e5ed0585a3ed7e2f4e6c1f7",
-                "sha256:d5f72c8239e46cfcc363c7e532a474b7ea3d8892b7b6e5ec0da6b3ebae2a07d3",
-                "sha256:d88f484a25ac212fd720b5f9b9686e83f86df2b091b51f4b7b1d9089bd842f79"
-            ],
-            "index": "pypi",
-            "version": "==0.23.0"
-        },
-        "patsy": {
-            "hashes": [
-                "sha256:5465be1c0e670c3a965355ec09e9a502bf2c4cbe4875e8528b0221190a8a5d40",
-                "sha256:f115cec4201e1465cd58b9866b0b0e7b941caafec129869057405bfe5b5e3991"
-            ],
-            "version": "==0.5.1"
-        },
-        "pbr": {
-            "hashes": [
-                "sha256:8257baf496c8522437e8a6cfe0f15e00aedc6c0e0e7c9d55eeeeab31e0853843",
-                "sha256:8c361cc353d988e4f5b998555c88098b9d5964c2e11acf7b0d21925a66bb5824"
-            ],
-            "version": "==5.1.3"
-        },
-        "pluggy": {
-            "hashes": [
-                "sha256:6e3836e39f4d36ae72840833db137f7b7d35105079aee6ec4a62d9f80d594dd1",
-                "sha256:95eb8364a4708392bae89035f45341871286a333f749c3141c20573d2b3876e1"
-            ],
-            "version": "==0.7.1"
-        },
-        "ptemcee": {
-            "hashes": [
-                "sha256:58e7c1d9a477acd808668b5caa5cb4d61fc5f6cd1df02a391d0d04cd14453739"
-            ],
-            "index": "pypi",
-            "version": "==1.0.0"
-        },
-        "py": {
-            "hashes": [
-                "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa",
-                "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53"
-            ],
-            "version": "==1.8.0"
-        },
-        "pycparser": {
-            "hashes": [
-                "sha256:a988718abfad80b6b157acce7bf130a30876d27603738ac39f140993246b25b3"
-            ],
-            "version": "==2.19"
-        },
-        "pymc3": {
-            "hashes": [
-                "sha256:c00c0778d2451a348a9508f8b956fe280a0f9affd3f85140ac3948bc2902f5e9"
-            ],
-            "index": "pypi",
-            "version": "==3.6"
-        },
-        "pyopenssl": {
-            "hashes": [
-                "sha256:aeca66338f6de19d1aa46ed634c3b9ae519a64b458f8468aec688e7e3c20f200",
-                "sha256:c727930ad54b10fc157015014b666f2d8b41f70c0d03e83ab67624fd3dd5d1e6"
-            ],
-            "version": "==19.0.0"
-        },
-        "pyparsing": {
-            "hashes": [
-                "sha256:1873c03321fc118f4e9746baf201ff990ceb915f433f23b395f5580d1840cb2a",
-                "sha256:9b6323ef4ab914af344ba97510e966d64ba91055d6b9afa6b30799340e89cc03"
-            ],
-            "version": "==2.4.0"
-        },
-        "pytest": {
-            "hashes": [
-                "sha256:341ec10361b64a24accaec3c7ba5f7d5ee1ca4cebea30f76fad3dd12db9f0541",
-                "sha256:952c0389db115437f966c4c2079ae9d54714b9455190e56acebe14e8c38a7efa"
-            ],
-            "version": "==3.6.4"
-        },
-        "python-dateutil": {
-            "hashes": [
-                "sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb",
-                "sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e"
-            ],
-            "version": "==2.8.0"
-        },
-        "pytz": {
-            "hashes": [
-                "sha256:303879e36b721603cc54604edcac9d20401bdbe31e1e4fdee5b9f98d5d31dfda",
-                "sha256:d747dd3d23d77ef44c6a3526e274af6efeb0a6f1afd5a69ba4d5be4098c8e141"
-            ],
-            "version": "==2019.1"
-        },
-        "scipy": {
-            "hashes": [
-                "sha256:014cb900c003b5ac81a53f2403294e8ecf37aedc315b59a6b9370dce0aa7627a",
-                "sha256:281a34da34a5e0de42d26aed692ab710141cad9d5d218b20643a9cb538ace976",
-                "sha256:588f9cc4bfab04c45fbd19c1354b5ade377a8124d6151d511c83730a9b6b2338",
-                "sha256:5a10661accd36b6e2e8855addcf3d675d6222006a15795420a39c040362def66",
-                "sha256:628f60be272512ca1123524969649a8cb5ae8b31cca349f7c6f8903daf9034d7",
-                "sha256:6dcc43a88e25b815c2dea1c6fac7339779fc988f5df8396e1de01610604a7c38",
-                "sha256:70e37cec0ac0fe95c85b74ca4e0620169590fd5d3f44765f3c3a532cedb0e5fd",
-                "sha256:7274735fb6fb5d67d3789ddec2cd53ed6362539b41aa6cc0d33a06c003aaa390",
-                "sha256:78e12972e144da47326958ac40c2bd1c1cca908edc8b01c26a36f9ffd3dce466",
-                "sha256:790cbd3c8d09f3a6d9c47c4558841e25bac34eb7a0864a9def8f26be0b8706af",
-                "sha256:79792c8fe8e9d06ebc50fe23266522c8c89f20aa94ac8e80472917ecdce1e5ba",
-                "sha256:865afedf35aaef6df6344bee0de391ee5e99d6e802950a237f9fb9b13e441f91",
-                "sha256:870fd401ec7b64a895cff8e206ee16569158db00254b2f7157b4c9a5db72c722",
-                "sha256:963815c226b29b0176d5e3d37fc9de46e2778ce4636a5a7af11a48122ef2577c",
-                "sha256:9726791484f08e394af0b59eb80489ad94d0a53bbb58ab1837dcad4d58489863",
-                "sha256:9de84a71bb7979aa8c089c4fb0ea0e2ed3917df3fb2a287a41aaea54bbad7f5d",
-                "sha256:b2c324ddc5d6dbd3f13680ad16a29425841876a84a1de23a984236d1afff4fa6",
-                "sha256:b86ae13c597fca087cb8c193870507c8916cefb21e52e1897da320b5a35075e5",
-                "sha256:ba0488d4dbba2af5bf9596b849873102d612e49a118c512d9d302ceafa36e01a",
-                "sha256:d78702af4102a3a4e23bb7372cec283e78f32f5573d92091aa6aaba870370fe1",
-                "sha256:def0e5d681dd3eb562b059d355ae8bebe27f5cc455ab7c2b6655586b63d3a8ea",
-                "sha256:e085d1babcb419bbe58e2e805ac61924dac4ca45a07c9fa081144739e500aa3c",
-                "sha256:e2cfcbab37c082a5087aba5ff00209999053260441caadd4f0e8f4c2d6b72088",
-                "sha256:e742f1f5dcaf222e8471c37ee3d1fd561568a16bb52e031c25674ff1cf9702d5",
-                "sha256:f06819b028b8ef9010281e74c59cb35483933583043091ed6b261bb1540f11cc",
-                "sha256:f15f2d60a11c306de7700ee9f65df7e9e463848dbea9c8051e293b704038da60",
-                "sha256:f31338ee269d201abe76083a990905473987371ff6f3fdb76a3f9073a361cf37",
-                "sha256:f6b88c8d302c3dac8dff7766955e38d670c82e0d79edfc7eae47d6bb2c186594"
-            ],
-            "index": "pypi",
-            "version": "==1.2.1"
-        },
-        "six": {
-            "hashes": [
-                "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c",
-                "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73"
-            ],
-            "version": "==1.12.0"
-        },
-        "tables": {
-            "hashes": [
-                "sha256:08ebb38c46a3833acb297f4d9fbb256ed28e0671cb0edef7e4ab6b29134d2f9d",
-                "sha256:102e55c6c85790ae58a202d3e1e82b78c8f3bf2ab38490f2b01d7ec9010165de",
-                "sha256:1fcf8802f8715731424277ffdd1faf4428371f40aefee1f8b1a14ef8d775ded0",
-                "sha256:221f1734ce6318cbf95994c574d78a3f56d57635effd474911116af20d9158cb",
-                "sha256:2fcfd88df0a081e7624d80dd991f25ba23f9300950289aa5766b8625db70ec3a",
-                "sha256:3354d8d7e9638b6afc8e86b8858576314abac7e8479081c55f43907532866f37",
-                "sha256:39c9a942cf1179504d9fe73d00d07c3ae7b434bab822b1ad07dc345442eeb39e",
-                "sha256:3f744c006dfc105a0e4674ba4bdad68c2cb9ea2dfd2bb5cb4eb43d87602e8a28",
-                "sha256:45987da933b549ae5592a4da9b5bb4e6519eaeada01f2838c301c0ee5b0bc774",
-                "sha256:51032a5976f65fcb076b29cd7337b272539bf034aeb1dc3e9c0d28df7d94e2e1",
-                "sha256:56967b8497b1aa898b43525e95e2e8b3085f20c30f2f6638af3e59e8cdf340ac",
-                "sha256:5b6035ecfff22deb7b82c35e34caa21a92134704af9b60ab006e562061f119f1",
-                "sha256:5fc2813c1ef24c88483e0accfd3ce971cfa6e47bbc00538c6d5b06c9ec2675e9",
-                "sha256:66880416323b9e00c88f372f57210bc716d14c63eec8afc5dbeed7701955e754",
-                "sha256:6aced515f538c2c45afb3c7951df3cea3e9f37df5ef7743e233b35905b7a1d58",
-                "sha256:779d51bf969626b92738847686a44aeb9d48a92af9f38b94ad7b9f455fd65f58",
-                "sha256:81d036e5c1f3912698507f176499a820e0c6f1f5bf7fa135acd5dc331de95204",
-                "sha256:88e2f3be1f143febc8bf8a7fe49ad51fc12518d6a1ac4eb641778d93e5dc2039",
-                "sha256:9d65f20af462e1e735414937225d50e126ba4cdca91d5908b0994a3f7d457666",
-                "sha256:b17af3f07c9b1afc723742c9f067fa8b3bd034676ca4eefaca8d251f22693342",
-                "sha256:b22284e1d9fd4bd3ea4d357ce939078c44af4b23b9a2a3f1189a54a67a93f57a",
-                "sha256:d8f4091ca8f521ddea0e7702269b87a721443439981f9ab06544e3dcd6ed314b",
-                "sha256:fb7a873a86dfc801256cd295547d7fae2632a09cf37a349f9951a593a178bdc3"
-            ],
-            "version": "==3.5.1"
-        },
-        "theano": {
-            "hashes": [
-                "sha256:35c9bbef56b61ffa299265a42a4e8f8cb5a07b2997dabaef0f8830b397086913"
-            ],
-            "index": "pypi",
-            "version": "==1.0.4"
-        },
-        "tqdm": {
-            "hashes": [
-                "sha256:d385c95361699e5cf7622485d9b9eae2d4864b21cd5a2374a9c381ffed701021",
-                "sha256:e22977e3ebe961f72362f6ddfb9197cc531c9737aaf5f607ef09740c849ecd05"
-            ],
-            "version": "==4.31.1"
-        }
-    },
-    "develop": {}
-}
diff --git a/bilby/core/prior/dict.py b/bilby/core/prior/dict.py
index 3324daf3b04fb6589f36326c180072c46ce6672e..a375625b3082ecf54d9005ff85fef766671386b2 100644
--- a/bilby/core/prior/dict.py
+++ b/bilby/core/prior/dict.py
@@ -1,14 +1,12 @@
 from importlib import import_module
 from io import open as ioopen
 import json
-import numpy as np
 import os
 
 from future.utils import iteritems
 from matplotlib.cbook import flatten
+import numpy as np
 
-# keep 'import *' to make eval() statement further down work consistently
-from bilby.core.prior.analytical import *  # noqa
 from bilby.core.prior.analytical import DeltaFunction
 from bilby.core.prior.base import Prior, Constraint
 from bilby.core.prior.joint import JointPrior
@@ -142,7 +140,6 @@ class PriorDict(dict):
 
         comments = ['#', '\n']
         prior = dict()
-        mvgdict = dict(inf=np.inf)  # evaluate inf as np.inf
         with ioopen(filename, 'r', encoding='unicode_escape') as f:
             for line in f:
                 if line[0] in comments:
@@ -151,39 +148,8 @@ class PriorDict(dict):
                 elements = line.split('=')
                 key = elements[0].replace(' ', '')
                 val = '='.join(elements[1:]).strip()
-                cls = val.split('(')[0]
-                args = '('.join(val.split('(')[1:])[:-1]
-                try:
-                    prior[key] = DeltaFunction(peak=float(cls))
-                    logger.debug("{} converted to DeltaFunction prior".format(
-                        key))
-                    continue
-                except ValueError:
-                    pass
-                if "." in cls:
-                    module = '.'.join(cls.split('.')[:-1])
-                    cls = cls.split('.')[-1]
-                else:
-                    module = __name__.replace('.' + os.path.basename(__file__).replace('.py', ''), '')
-                cls = getattr(import_module(module), cls, cls)
-                if key.lower() in ["conversion_function", "condition_func"]:
-                    setattr(self, key, cls)
-                elif (cls.__name__ in ['MultivariateGaussianDist',
-                                       'MultivariateNormalDist']):
-                    if key not in mvgdict:
-                        mvgdict[key] = eval(val, None, mvgdict)
-                elif (cls.__name__ in ['MultivariateGaussian',
-                                       'MultivariateNormal']):
-                    prior[key] = eval(val, None, mvgdict)
-                else:
-                    try:
-                        prior[key] = cls.from_repr(args)
-                    except TypeError as e:
-                        raise TypeError(
-                            "Unable to parse dictionary file {}, bad line: {} "
-                            "= {}. Error message {}".format(
-                                filename, key, val, e))
-        self.update(prior)
+                prior[key] = val
+        self.from_dictionary(prior)
 
     @classmethod
     def _get_from_json_dict(cls, prior_dict):
@@ -218,22 +184,61 @@ class PriorDict(dict):
         return obj
 
     def from_dictionary(self, dictionary):
+        eval_dict = dict(inf=np.inf)
         for key, val in iteritems(dictionary):
-            if isinstance(val, str):
+            if isinstance(val, Prior):
+                continue
+            elif isinstance(val, (int, float)):
+                dictionary[key] = DeltaFunction(peak=val)
+            elif isinstance(val, str):
+                cls = val.split('(')[0]
+                args = '('.join(val.split('(')[1:])[:-1]
                 try:
-                    prior = eval(val)
-                    if isinstance(prior, (Prior, float, int, str)):
-                        val = prior
-                except (NameError, SyntaxError, TypeError):
-                    logger.debug(
-                        "Failed to load dictionary value {} correctly"
-                        .format(key))
+                    dictionary[key] = DeltaFunction(peak=float(cls))
+                    logger.debug("{} converted to DeltaFunction prior".format(key))
+                    continue
+                except ValueError:
                     pass
+                if "." in cls:
+                    module = '.'.join(cls.split('.')[:-1])
+                    cls = cls.split('.')[-1]
+                else:
+                    module = __name__.replace(
+                        '.' + os.path.basename(__file__).replace('.py', ''), ''
+                    )
+                cls = getattr(import_module(module), cls, cls)
+                if key.lower() in ["conversion_function", "condition_func"]:
+                    setattr(self, key, cls)
+                elif isinstance(cls, str):
+                    if "(" in val:
+                        raise TypeError("Unable to parse prior class {}".format(cls))
+                    else:
+                        continue
+                elif (cls.__name__ in ['MultivariateGaussianDist',
+                                       'MultivariateNormalDist']):
+                    if key not in eval_dict:
+                        eval_dict[key] = eval(val, None, eval_dict)
+                elif (cls.__name__ in ['MultivariateGaussian',
+                                       'MultivariateNormal']):
+                    dictionary[key] = eval(val, None, eval_dict)
+                else:
+                    try:
+                        dictionary[key] = cls.from_repr(args)
+                    except TypeError as e:
+                        raise TypeError(
+                            "Unable to parse prior, bad entry: {} "
+                            "= {}. Error message {}".format(key, val, e)
+                        )
             elif isinstance(val, dict):
                 logger.warning(
                     'Cannot convert {} into a prior object. '
                     'Leaving as dictionary.'.format(key))
-            self[key] = val
+            else:
+                raise TypeError(
+                    "Unable to parse prior, bad entry: {} "
+                    "= {} of type {}".format(key, val, type(val))
+                )
+        self.update(dictionary)
 
     def convert_floats_to_delta_functions(self):
         """ Convert all float parameters to delta functions """
diff --git a/bilby/core/result.py b/bilby/core/result.py
index 630830dfc3830de9f6e338e88f469523bfa3f988..19b372096ce367f30f0f85d88da8b5f492a0ad86 100644
--- a/bilby/core/result.py
+++ b/bilby/core/result.py
@@ -20,7 +20,7 @@ from . import utils
 from .utils import (logger, infer_parameters_from_function,
                     check_directory_exists_and_if_not_mkdir,)
 from .utils import BilbyJsonEncoder, decode_bilby_json
-from .prior import Prior, PriorDict, DeltaFunction, ConditionalPriorDict
+from .prior import Prior, PriorDict, DeltaFunction
 
 
 def result_file_name(outdir, label, extension='json', gzip=False):
@@ -276,15 +276,15 @@ class Result(object):
         if getattr(self, 'posterior', None) is not None:
             if getattr(self, 'log_noise_evidence', None) is not None:
                 return ("nsamples: {:d}\n"
-                        "log_noise_evidence: {:6.3f}\n"
-                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
-                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
+                        "ln_noise_evidence: {:6.3f}\n"
+                        "ln_evidence: {:6.3f} +/- {:6.3f}\n"
+                        "ln_bayes_factor: {:6.3f} +/- {:6.3f}\n"
                         .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
                                 self.log_evidence_err, self.log_bayes_factor,
                                 self.log_evidence_err))
             else:
                 return ("nsamples: {:d}\n"
-                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
+                        "ln_evidence: {:6.3f} +/- {:6.3f}\n"
                         .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
         else:
             return ''
@@ -299,7 +299,7 @@ class Result(object):
     @priors.setter
     def priors(self, priors):
         if isinstance(priors, dict):
-            if isinstance(priors, ConditionalPriorDict):
+            if isinstance(priors, PriorDict):
                 self._priors = priors
             else:
                 self._priors = PriorDict(priors)
@@ -389,6 +389,22 @@ class Result(object):
     def posterior(self, posterior):
         self._posterior = posterior
 
+    @property
+    def log_10_bayes_factor(self):
+        return self.log_bayes_factor / np.log(10)
+
+    @property
+    def log_10_evidence(self):
+        return self.log_evidence / np.log(10)
+
+    @property
+    def log_10_evidence_err(self):
+        return self.log_evidence_err / np.log(10)
+
+    @property
+    def log_10_noise_evidence(self):
+        return self.log_noise_evidence / np.log(10)
+
     @property
     def version(self):
         return self._version
@@ -1526,8 +1542,9 @@ def plot_multiple(results, filename=None, labels=None, colours=None,
     return fig
 
 
-def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9,
+def make_pp_plot(results, filename=None, save=True, confidence_interval=[0.68, 0.95, 0.997],
                  lines=None, legend_fontsize='x-small', keys=None, title=True,
+                 confidence_interval_alpha=0.1,
                  **kwargs):
     """
     Make a P-P plot for a set of runs with injected signals.
@@ -1540,8 +1557,8 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9,
         The name of the file to save, the default is "outdir/pp.png"
     save: bool, optional
         Whether to save the file, default=True
-    confidence_interval: float, optional
-        The confidence interval to be plotted, defaulting to 0.9 (90%)
+    confidence_interval: (float, list), optional
+        The confidence interval to be plotted, defaulting to 1-2-3 sigma
     lines: list
         If given, a list of matplotlib line formats to use, must be greater
         than the number of parameters.
@@ -1549,6 +1566,8 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9,
         The font size for the legend
     keys: list
         A list of keys to use, if None defaults to search_parameter_keys
+    confidence_interval_alpha: float, list, optional
+        The transparency for the background condifence interval
     kwargs:
         Additional kwargs to pass to matplotlib.pyplot.plot
 
@@ -1576,18 +1595,26 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9,
 
     x_values = np.linspace(0, 1, 1001)
 
-    # Putting in the confidence bands
     N = len(credible_levels)
-    edge_of_bound = (1. - confidence_interval) / 2.
-    lower = scipy.stats.binom.ppf(1 - edge_of_bound, N, x_values) / N
-    upper = scipy.stats.binom.ppf(edge_of_bound, N, x_values) / N
-    # The binomial point percent function doesn't always return 0 @ 0,
-    # so set those bounds explicitly to be sure
-    lower[0] = 0
-    upper[0] = 0
     fig, ax = plt.subplots()
 
-    ax.fill_between(x_values, lower, upper, alpha=0.2, color='k')
+    if isinstance(confidence_interval, float):
+        confidence_interval = [confidence_interval]
+    if isinstance(confidence_interval_alpha, float):
+        confidence_interval_alpha = [confidence_interval_alpha] * len(confidence_interval)
+    elif len(confidence_interval_alpha) != len(confidence_interval):
+        raise ValueError(
+            "confidence_interval_alpha must have the same length as confidence_interval")
+
+    for ci, alpha in zip(confidence_interval, confidence_interval_alpha):
+        edge_of_bound = (1. - ci) / 2.
+        lower = scipy.stats.binom.ppf(1 - edge_of_bound, N, x_values) / N
+        upper = scipy.stats.binom.ppf(edge_of_bound, N, x_values) / N
+        # The binomial point percent function doesn't always return 0 @ 0,
+        # so set those bounds explicitly to be sure
+        lower[0] = 0
+        upper[0] = 0
+        ax.fill_between(x_values, lower, upper, alpha=alpha, color='k')
 
     pvalues = []
     logger.info("Key: KS-test p-value")
@@ -1617,7 +1644,7 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9,
             len(results), pvals.combined_pvalue))
     ax.set_xlabel("C.I.")
     ax.set_ylabel("Fraction of events in C.I.")
-    ax.legend(linewidth=1, labelspacing=0.25, fontsize=legend_fontsize)
+    ax.legend(linewidth=1, handlelength=2, labelspacing=0.25, fontsize=legend_fontsize)
     ax.set_xlim(0, 1)
     ax.set_ylim(0, 1)
     fig.tight_layout()
diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py
index 9d72464c2584dbd280249ab27c56b802301d76c6..197a6de7653c15f35751295082a1e7ed7826c232 100644
--- a/bilby/core/sampler/base_sampler.py
+++ b/bilby/core/sampler/base_sampler.py
@@ -439,7 +439,10 @@ class Sampler(object):
         return np.array(unit_cube), np.array(parameters), np.array(likelihood)
 
     def check_draw(self, theta, warning=True):
-        """ Checks if the draw will generate an infinite prior or likelihood
+        """
+        Checks if the draw will generate an infinite prior or likelihood
+
+        Also catches the output of `numpy.nan_to_num`.
 
         Parameters
         ----------
@@ -452,11 +455,12 @@ class Sampler(object):
             True if the likelihood and prior are finite, false otherwise
 
         """
-        if np.isinf(self.log_prior(theta)):
+        bad_values = [np.inf, np.nan_to_num(np.inf), np.nan]
+        if abs(self.log_prior(theta)) in bad_values:
             if warning:
                 logger.warning('Prior draw {} has inf prior'.format(theta))
             return False
-        if np.isinf(self.log_likelihood(theta)):
+        if abs(self.log_likelihood(theta)) in bad_values:
             if warning:
                 logger.warning('Prior draw {} has inf likelihood'.format(theta))
             return False
diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py
index 1ed64e89c23b1588c88083043e3b74d64989ad0f..4c46e02f29b35a0a1dc5615c52b38ad67cab072e 100644
--- a/bilby/core/sampler/cpnest.py
+++ b/bilby/core/sampler/cpnest.py
@@ -38,7 +38,7 @@ class Cpnest(NestedSampler):
         {self.outdir}/cpnest_{self.label}/
 
     """
-    default_kwargs = dict(verbose=1, nthreads=1, nlive=500, maxmcmc=1000,
+    default_kwargs = dict(verbose=3, nthreads=1, nlive=500, maxmcmc=1000,
                           seed=None, poolsize=100, nhamiltonian=0, resume=True,
                           output=None, proposals=None, n_periodic_checkpoint=8000)
 
diff --git a/bilby/core/sampler/dynamic_dynesty.py b/bilby/core/sampler/dynamic_dynesty.py
index 0f2a8013dae906749aabe7f426cc48d5eafb1203..4e7e1f56dfa5134b25ef9e50c9cb83f3dc2b8e36 100644
--- a/bilby/core/sampler/dynamic_dynesty.py
+++ b/bilby/core/sampler/dynamic_dynesty.py
@@ -44,9 +44,6 @@ class DynamicDynesty(Dynesty):
 
     Other Parameters
     ----------------
-    npoints: int, (250)
-        The number of live points, note this can also equivalently be given as
-        one of [nlive, nlives, n_live_points]
     bound: {'none', 'single', 'multi', 'balls', 'cubes'}, ('multi')
         Method used to select new points
     sample: {'unif', 'rwalk', 'slice', 'rslice', 'hslice'}, ('rwalk')
diff --git a/bilby/core/sampler/dynesty.py b/bilby/core/sampler/dynesty.py
index 7d6e511cdb62958e94192d04e22c7dc66f4c5eaf..d11334ee6d8174d31c4646bd5ec18cec8d1a3d99 100644
--- a/bilby/core/sampler/dynesty.py
+++ b/bilby/core/sampler/dynesty.py
@@ -329,7 +329,6 @@ class Dynesty(NestedSampler):
         sampler_kwargs['add_live'] = True
         self.start_time = datetime.datetime.now()
         while True:
-            sampler_kwargs['maxcall'] += self.n_check_point
             self._run_nested_wrapper(sampler_kwargs)
             if self.sampler.ncall == old_ncall:
                 break
diff --git a/bilby/gw/conversion.py b/bilby/gw/conversion.py
index 31eef6eea8e0217c34487d4919fd3a44245163a0..469eef80e594f6a06013be2945d1262366855fcd 100644
--- a/bilby/gw/conversion.py
+++ b/bilby/gw/conversion.py
@@ -56,7 +56,7 @@ def luminosity_distance_to_comoving_distance(distance, cosmology=None):
 def bilby_to_lalsimulation_spins(
         theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1, mass_2,
         reference_frequency, phase):
-    if tilt_1 in [0, np.pi] and tilt_2 in [0, np.pi]:
+    if (a_1 == 0 or tilt_1 in [0, np.pi]) and (a_2 == 0 or tilt_2 in [0, np.pi]):
         spin_1x = 0
         spin_1y = 0
         spin_1z = a_1 * np.cos(tilt_1)
diff --git a/bilby/gw/likelihood.py b/bilby/gw/likelihood.py
index 45078af08199b935ec0f230bc13c650c451482d8..78626248189be863e5bd45f8bd0ad08f7225b1d4 100644
--- a/bilby/gw/likelihood.py
+++ b/bilby/gw/likelihood.py
@@ -22,7 +22,7 @@ from ..core.utils import (
     speed_of_light, radius_of_earth)
 from ..core.prior import Interped, Prior, Uniform
 from .detector import InterferometerList
-from .prior import BBHPriorDict, CBCPriorDict
+from .prior import BBHPriorDict, CBCPriorDict, Cosmological
 from .source import lal_binary_black_hole
 from .utils import noise_weighted_inner_product, build_roq_weights, blockwise_dot_product
 from .waveform_generator import WaveformGenerator
@@ -143,6 +143,9 @@ class GravitationalWaveTransient(Likelihood):
                  for distance in self._distance_array])
             self._setup_distance_marginalization(
                 distance_marginalization_lookup_table)
+            for key in ['redshift', 'comoving_distance']:
+                if key in priors:
+                    del priors[key]
             priors['luminosity_distance'] = float(self._ref_dist)
             self._marginalized_parameters.append('luminosity_distance')
 
@@ -214,6 +217,18 @@ class GravitationalWaveTransient(Likelihood):
                 self.priors[key] = Uniform(
                     self.interferometers.start_time,
                     self.interferometers.start_time + self.interferometers.duration)
+            elif key == 'luminosity_distance':
+                for key in ['redshift', 'comoving_distance']:
+                    if key in self.priors:
+                        if not isinstance(self.priors[key], Cosmological):
+                            raise TypeError(
+                                "To marginalize over {}, the prior must be specified as a "
+                                "subclass of bilby.gw.prior.Cosmological.".format(key)
+                            )
+                        self.priors['luminosity_distance'] = self.priors[key].get_corresponding_prior(
+                            'luminosity_distance'
+                        )
+                        del self.priors[key]
             else:
                 self.priors[key] = BBHPriorDict()[key]
 
diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py
index 5a07c8e944970071b4b08667e5717d34f9c2a137..c8472ebf90334d62128cb758aa0c92a571e729ba 100644
--- a/bilby/gw/prior.py
+++ b/bilby/gw/prior.py
@@ -136,31 +136,7 @@ class Cosmological(Interped):
 
     @minimum.setter
     def minimum(self, minimum):
-        cosmology = get_cosmology(self.cosmology)
-        self._minimum[self.name] = minimum
-        if self.name == 'redshift':
-            self._minimum['luminosity_distance'] =\
-                cosmology.luminosity_distance(minimum).value
-            self._minimum['comoving_distance'] =\
-                cosmology.comoving_distance(minimum).value
-        elif self.name == 'luminosity_distance':
-            if minimum == 0:
-                self._minimum['redshift'] = 0
-            else:
-                self._minimum['redshift'] = cosmo.z_at_value(
-                    cosmology.luminosity_distance, minimum * self.unit)
-            self._minimum['comoving_distance'] = self._minimum['redshift']
-        elif self.name == 'comoving_distance':
-            if minimum == 0:
-                self._minimum['redshift'] = 0
-            else:
-                self._minimum['redshift'] = cosmo.z_at_value(
-                    cosmology.comoving_distance, minimum * self.unit)
-            self._minimum['luminosity_distance'] = self._minimum['redshift']
-        try:
-            self._update_instance()
-        except (AttributeError, KeyError):
-            pass
+        self._set_limit(value=minimum, limit_dict=self._minimum)
 
     @property
     def maximum(self):
@@ -168,21 +144,44 @@ class Cosmological(Interped):
 
     @maximum.setter
     def maximum(self, maximum):
+        self._set_limit(value=maximum, limit_dict=self._maximum)
+
+    def _set_limit(self, value, limit_dict):
+        """
+        Set either the limits for redshift luminosity and comoving distances
+
+        Parameters
+        ----------
+        value: float
+            Limit value in current class' parameter
+        limit_dict: dict
+            The limit dictionary to modify in place
+        """
         cosmology = get_cosmology(self.cosmology)
-        self._maximum[self.name] = maximum
+        limit_dict[self.name] = value
         if self.name == 'redshift':
-            self._maximum['luminosity_distance'] = \
-                cosmology.luminosity_distance(maximum).value
-            self._maximum['comoving_distance'] = \
-                cosmology.comoving_distance(maximum).value
+            limit_dict['luminosity_distance'] = \
+                cosmology.luminosity_distance(value).value
+            limit_dict['comoving_distance'] = \
+                cosmology.comoving_distance(value).value
         elif self.name == 'luminosity_distance':
-            self._maximum['redshift'] = cosmo.z_at_value(
-                cosmology.luminosity_distance, maximum * self.unit)
-            self._maximum['comoving_distance'] = self._maximum['redshift']
+            if value == 0:
+                limit_dict['redshift'] = 0
+            else:
+                limit_dict['redshift'] = cosmo.z_at_value(
+                    cosmology.luminosity_distance, value * self.unit)
+            limit_dict['comoving_distance'] = (
+                cosmology.comoving_distance(limit_dict['redshift']).value
+            )
         elif self.name == 'comoving_distance':
-            self._maximum['redshift'] = cosmo.z_at_value(
-                cosmology.comoving_distance, maximum * self.unit)
-            self._maximum['luminosity_distance'] = self._maximum['redshift']
+            if value == 0:
+                limit_dict['redshift'] = 0
+            else:
+                limit_dict['redshift'] = cosmo.z_at_value(
+                    cosmology.comoving_distance, value * self.unit)
+            limit_dict['luminosity_distance'] = (
+                cosmology.luminosity_distance(limit_dict['redshift']).value
+            )
         try:
             self._update_instance()
         except (AttributeError, KeyError):
@@ -767,22 +766,30 @@ ConditionalUniformSourceFrame = conditional_prior_factory(UniformSourceFrame)
 
 
 class HealPixMapPriorDist(BaseJointPriorDist):
-    def __init__(self, hp_file, names=None, bounds=None, distance=False):
-        """
-        Class defining prior according to given HealPix Map, defaults to 2D in ra and dec but can be set to include
-        Distance as well. This only works with skymaps that include the 2D joint probability in ra/dec and that use the
-        normal LALInference type skymaps where each pixel has a DISTMU, DISTSIGMA, and DISTNORM defining the conditional
-        distance distribution along a given line of sight.
-
-        hp_file: file path to .fits file
-            .fits file that containes the 2D or 3D Healpix Map
-        names: list (optional)
-            list of names of parameters included in the JointPriorDist, defaults to ['ra', 'dec']
-        bounds: dict or list (optional)
-            dictionary or list with given prior bounds. defaults to normal bounds on ra, dev and 0, inf for distance
-            if this is for a 3D map
-        """
+    """
+    Class defining prior according to given HealPix Map, defaults to 2D in ra and dec but can be set to include
+    Distance as well. This only works with skymaps that include the 2D joint probability in ra/dec and that use the
+    normal LALInference type skymaps where each pixel has a DISTMU, DISTSIGMA, and DISTNORM defining the conditional
+    distance distribution along a given line of sight.
+
+    Parameters
+    ----------
+
+    hp_file : file path to .fits file
+        .fits file that containes the 2D or 3D Healpix Map
+    names : list (optional)
+        list of names of parameters included in the JointPriorDist, defaults to ['ra', 'dec']
+    bounds : dict or list (optional)
+        dictionary or list with given prior bounds. defaults to normal bounds on ra, dev and 0, inf for distance
+        if this is for a 3D map
+
+    Returns
+    -------
 
+    PriorDist : `bilby.gw.prior.HealPixMapPriorDist`
+        A JointPriorDist object to store the joint prior distribution according to passed healpix map
+    """
+    def __init__(self, hp_file, names=None, bounds=None, distance=False):
         self.hp = self._check_imports()
         self.hp_file = hp_file
         if names is None:
@@ -854,14 +861,14 @@ class HealPixMapPriorDist(BaseJointPriorDist):
 
         Parameters
         ----------
-        samp: float, int
+        samp : float, int
             must take in single value for pixel on unitcube to recale onto ra, dec (distance), for the map Prior
-        kwargs: dict
+        kwargs : dict
             kwargs are all passed to _rescale() method
 
         Returns
-        ----------
-        array_like
+        -------
+        rescaled_sample : array_like
             sample to rescale onto the prior
         """
         if self.distance:
@@ -889,12 +896,15 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         JointPrior Parameters. This function updates the current distance pdf, inverse_cdf, and sampler according to
         given pixel or line of sight.
 
+        Parameters
         ----------
-        pix_idx: int
+        pix_idx : int
             pixel index value to create the distribtuion for
+
         Returns
-        ----------
-        None - just updates these functions at new pixel values
+        -------
+        None : None
+            just updates these functions at new pixel values
         """
         self.distance_pdf = lambda r: self.distnorm[pix_idx] * norm(
             loc=self.distmu[pix_idx], scale=self.distsigma[pix_idx]
@@ -918,12 +928,12 @@ class HealPixMapPriorDist(BaseJointPriorDist):
 
         Parameters
         ----------
-        array: array_like
+        array : array_like
             input array we want to renormalize if not already normalized
 
         Returns
-        ---------
-        array_like:
+        -------
+        normed_array : array_like
             returns input array normalized
         """
         norm = np.linalg.norm(array, ord=1)
@@ -940,14 +950,14 @@ class HealPixMapPriorDist(BaseJointPriorDist):
 
         Parameters
         ----------
-        size: int
+        size : int
             number of samples we want to draw
-        kwargs: dict
+        kwargs : dict
             kwargs are all passed to be used
 
         Returns
-        ----------
-        array_like
+        -------
+        sample : array_like
             sample of ra, and dec (and distance if 3D=True)
         """
         pixel_choices = np.arange(self.npix)
@@ -971,9 +981,16 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         Method to recursively draw a distance value from the given set distance distribution and check that it is in
         the bounds
 
-        Returns
+        Parameters
         ----------
-        dist: sample drawn from the distance distribution at set pixel index
+
+        pix : int
+            integer for pixel to draw a distance from
+
+        Returns
+        -------
+        dist : float
+            sample drawn from the distance distribution at set pixel index
         """
         if self.distmu[pix] == np.inf or self.distmu[pix] <= 0:
             return 0
@@ -990,16 +1007,16 @@ class HealPixMapPriorDist(BaseJointPriorDist):
 
         Parameters
         ----------
-        ra: float, int
+        ra : float, int
             value drawn for rightascension
-        dec: float, int
+        dec : float, int
             value drawn for declination
-        pix: int
+        pix : int
             pixel index for given pixel we want to get ra, and dec from
 
         Returns
-        ---------
-        tuple:
+        -------
+        ra_dec : tuple
             this returns a tuple of ra, and dec sampled uniformly that are in the pixel given
         """
         if not self.check_in_pixel(ra, dec, pix):
@@ -1017,16 +1034,16 @@ class HealPixMapPriorDist(BaseJointPriorDist):
 
         Parameters
         ----------
-        ra: float, int
+        ra : float, int
             rightascension value to check
-        dec: float, int
+        dec : float, int
             declination value to check
-        pix: int
+        pix : int
             index for pixel we want to check in
 
         Returns
-        --------
-        bool:
+        -------
+        bool :
             returns True if values inside pixel, False if not
         """
         for val, name in zip([ra, dec], self.names):
@@ -1042,16 +1059,16 @@ class HealPixMapPriorDist(BaseJointPriorDist):
 
         Parameters
         ----------
-        samp: array_like
+        samp : array_like
             samples of ra, dec to evaluate the lnprob at
-        lnprob: array_like
+        lnprob : array_like
             array of correct length we want to populate with lnprob values
-        outbounds: boolean array
+        outbounds : boolean array
             boolean array that flags samples that are out of the given bounds
 
         Returns
-        ----------
-        array_like
+        -------
+        lnprob : array_like
             lnprob values at each sample
         """
         for i in range(samp.shape[0]):
diff --git a/bilby/gw/source.py b/bilby/gw/source.py
index 6fc9d354f4741abe875a6a94f12c56d08c901482..c6f7101801bbe671bc0785da8d217a94262503ee 100644
--- a/bilby/gw/source.py
+++ b/bilby/gw/source.py
@@ -396,6 +396,13 @@ def _base_lal_cbc_fd_waveform(
     h_plus *= frequency_bounds
     h_cross *= frequency_bounds
 
+    if wf_func == lalsim_SimInspiralFD:
+        dt = 1. / delta_frequency + (hplus.epoch.gpsSeconds + hplus.epoch.gpsNanoSeconds * 1e-9)
+        h_plus *= np.exp(
+            -1j * 2 * np.pi * dt * frequency_array)
+        h_cross *= np.exp(
+            -1j * 2 * np.pi * dt * frequency_array)
+
     return dict(plus=h_plus, cross=h_cross)
 
 
diff --git a/docs/gw_prior.txt b/docs/gw_prior.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1167ec7edf9aa407575b4a37e5e60796095e6874
--- /dev/null
+++ b/docs/gw_prior.txt
@@ -0,0 +1,32 @@
+.. gw_prior:
+
+===================================
+Transient Graviatiaonal wave priors
+===================================
+
+A Cosmological GW prior, :code:`Cosmological`:
+
+.. autoclass:: bilby.gw.prior.Cosmological
+   :members:
+
+Uniform in Comoving Volume GW Prior (inherited from Cosmological) :code:`UniformComovingVolume`:
+
+.. autoclass:: bilby.gw.prior.UniformComovingVolume
+   :members:
+
+Uniform in Source Frame GW Prior :code:`UniformSourceFrame`:
+
+.. autoclass:: bilby.gw.prior.UniformSourceFrame
+   :members:
+
+Aligned Spine GW Prior :code:`AlignedSpin`:
+
+.. autoclass:: bilby.gw.prior.AlignedSpin
+   :members:
+
+HealPixMap JointPriorDist (See JointPriors in bilby.core.prior.joint) :code:`HealPixMapPriorDist`:
+
+.. autoclass:: bilby.gw.prior.HealPixMapPriorDist
+   :members:
+
+
diff --git a/docs/index.txt b/docs/index.txt
index eb0cb84acb78e42e0d323f60d552fecd8c9dd440..45c4b119810b707ae6e36bea30752ea2815d231f 100644
--- a/docs/index.txt
+++ b/docs/index.txt
@@ -20,6 +20,7 @@ Welcome to bilby's documentation!
    compact-binary-coalescence-parameter-estimation
    transient-gw-data
    gw_likelihood
+   gw_prior
    conversion
    gw_references
    writing-documentation
diff --git a/examples/core_examples/logo/sample_logo.py b/examples/core_examples/logo/sample_logo.py
index 9340e34f5b4d1ede09d562650fa752ccf974b4f2..20b591a39c0e091c9e1ac660f89b572939c37650 100644
--- a/examples/core_examples/logo/sample_logo.py
+++ b/examples/core_examples/logo/sample_logo.py
@@ -8,14 +8,14 @@ from skimage import io
 class Likelihood(bilby.Likelihood):
     def __init__(self, interp):
         self.interp = interp
-        self.parameters = dict(x=None, y=None)
+        super().__init__(parameters=dict(x=None, y=None))
 
     def log_likelihood(self):
         return -1 / (self.interp(self.parameters['x'], self.parameters['y'])[0])
 
 
 for letter in ['B', 'I', 'L', 'Y']:
-    img = 1 - io.imread('{}.png'.format(letter), as_grey=True)[::-1, :]
+    img = 1 - io.imread('{}.png'.format(letter), as_gray=True)[::-1, :]
     x = np.arange(img.shape[0])
     y = np.arange(img.shape[1])
     interp = si.interpolate.interp2d(x, y, img.T)
diff --git a/setup.cfg b/setup.cfg
index a7a69fe9f033787df2a7eab72d3f56e6f3f6db48..fad8e426f7aece3c1095427bd83748ca9d1255a1 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -9,6 +9,7 @@ addopts =
     --ignore test/gw_example_test.py
     --ignore test/example_test.py
     --ignore test/sample_from_the_prior_test.py
+    --ignore test/sampler_test.py
 
 [metadata]
 license_file = LICENSE.md
diff --git a/setup.py b/setup.py
index 1f7aaa45edf181789169728c1725efcc27427732..1c07598b11fbdd7b9fafccf0f0c53ffba74b94db 100644
--- a/setup.py
+++ b/setup.py
@@ -64,7 +64,7 @@ def readfile(filename):
     return filecontents
 
 
-VERSION = '0.6.4'
+VERSION = '0.6.5'
 version_file = write_version_file(VERSION)
 long_description = get_long_description()
 
diff --git a/test/prior_test.py b/test/prior_test.py
index d579e31a64ec1319c4856ee76795aa7c47c24922..832956928bc2c44217395afd287cc564868d4325 100644
--- a/test/prior_test.py
+++ b/test/prior_test.py
@@ -929,7 +929,7 @@ class TestFillPrior(unittest.TestCase):
         self.likelihood = Mock()
         self.likelihood.parameters = dict(a=0, b=0, c=0, d=0, asdf=0, ra=1)
         self.likelihood.non_standard_sampling_parameter_keys = dict(t=8)
-        self.priors = dict(a=1, b=1.1, c='string', d=bilby.core.prior.Uniform(0, 1))
+        self.priors = dict(a=1, b=1.1, c="string", d=bilby.core.prior.Uniform(0, 1))
         self.priors = bilby.core.prior.PriorDict(dictionary=self.priors)
         self.default_prior_file = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                                'prior_files/binary_black_holes.prior')
diff --git a/test/sampler_test.py b/test/sampler_test.py
index 7a80eac6fd8d838604b59aca2d873e7328db5120..1bc4b59168c0bb82888d34b70b6efa070eb46375 100644
--- a/test/sampler_test.py
+++ b/test/sampler_test.py
@@ -112,14 +112,14 @@ class TestCPNest(unittest.TestCase):
         del self.sampler
 
     def test_default_kwargs(self):
-        expected = dict(verbose=1, nthreads=1, nlive=500, maxmcmc=1000,
+        expected = dict(verbose=3, nthreads=1, nlive=500, maxmcmc=1000,
                         seed=None, poolsize=100, nhamiltonian=0, resume=True,
                         output='outdir/cpnest_label/', proposals=None,
                         n_periodic_checkpoint=8000)
         self.assertDictEqual(expected, self.sampler.kwargs)
 
     def test_translate_kwargs(self):
-        expected = dict(verbose=1, nthreads=1, nlive=250, maxmcmc=1000,
+        expected = dict(verbose=3, nthreads=1, nlive=250, maxmcmc=1000,
                         seed=None, poolsize=100, nhamiltonian=0, resume=True,
                         output='outdir/cpnest_label/', proposals=None,
                         n_periodic_checkpoint=8000)
@@ -552,7 +552,8 @@ class TestRunningSamplers(unittest.TestCase):
     def test_run_dynamic_dynesty(self):
         _ = bilby.run_sampler(
             likelihood=self.likelihood, priors=self.priors, sampler='dynamic_dynesty',
-            nlive=100, save=False)
+            nlive_init=100, nlive_batch=100, dlogz_init=1.0, maxbatch=0,
+            maxcall=100, bound="single", save=False)
 
     def test_run_emcee(self):
         _ = bilby.run_sampler(