diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 6089160269d5ea613fae7036f8d4c1e480cab4f9..f426e45d175031e9f8654244aecb303c1d3fb16f 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -51,7 +51,7 @@ python-3.7: - flake8 . # Run tests and collect coverage data - - pytest --cov=bilby + - pytest --cov=bilby --durations 10 - coverage html - coverage-badge -o coverage_badge.svg -f @@ -75,10 +75,28 @@ python-3.6: - pytest +# test samplers on python 3.7 +python-3.7-samplers: + stage: test + image: bilbydev/v2-dockerfile-test-suite-python37 + script: + - python -m pip install . + + - pytest test/sampler_test.py --durations 10 + +# test samplers on python 3.6 +python-3.6-samplers: + stage: test + image: bilbydev/v2-dockerfile-test-suite-python36 + script: + - python -m pip install . + + - pytest test/sampler_test.py + # Tests run at a fixed schedule rather than on push scheduled-python-3.7: stage: test - image: bilbydev/bilby-test-suite-python37 + image: bilbydev/v2-dockerfile-test-suite-python37 only: - schedules script: @@ -104,3 +122,17 @@ pages: expire_in: 30 days only: - master + +deploy_release: + stage: deploy + image: bilbydev/v2-dockerfile-test-suite-python37 + variables: + TWINE_USERNAME: $PYPI_USERNAME + TWINE_PASSWORD: $PYPI_PASSWORD + before_script: + - pip install twine + - python setup.py sdist + script: + - twine upload dist/* + only: + - tags diff --git a/CHANGELOG.md b/CHANGELOG.md index 5fbd2aa5a933201df222ab0c94fc0ba8ff1a34f8..c69ba9b2dfbbabb1e1c734ce39257b7db1234690 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,5 +1,23 @@ # All notable changes will be documented in this file +## [0.6.5] 2020-02-14 +### Changes +- Fix for time reconstruction bug (!714) +- Resolved errors Waveform longer than the frequency array (!710) +- Prior reading clean-up (!715) +- More efficient dynesty restarting (!713) +- PP tests show 123 sigma bounds by default (!726) + +### Added +- HealPixPrior (!651) +- GW prior documentation (!720) +- Multiple contours to PP tests plots (!721) +- Distance marginalization for non-luminosity-distance parameters (!719) + +### Removed +- Pipenv (!724) + + ## [0.6.4] 2020-01-30 ### Changes - Discontinue python2.7 support (!697) diff --git a/Pipfile b/Pipfile deleted file mode 100644 index a543565eb9540cc24838229c8574a5ae778fd8d4..0000000000000000000000000000000000000000 --- a/Pipfile +++ /dev/null @@ -1,34 +0,0 @@ -[[source]] -url = "https://pypi.org/simple" -verify_ssl = true -name = "pypi" - -[packages] -future = "*" -corner = "*" -numpy = "==1.15.2" -ligotimegps = "<=1.2.3" -matplotlib = "<3" -scipy = ">=0.16" -pandas = "==0.23.0" -deepdish = "==0.3.6" -mock = "*" -astropy = "<3" -gwpy = "*" -theano = "*" -lalsuite = "*" -dill = "*" - -# cpnest = "*" -dynesty = "*" -emcee = "*" -nestle = "*" -ptemcee = "*" -pymc3 = "*" - -[requires] - -[dev-packages] - -[pipenv] -allow_prereleases = false diff --git a/Pipfile.lock b/Pipfile.lock deleted file mode 100644 index add2830ca920575ab49a8200fa48a9b41e6928ce..0000000000000000000000000000000000000000 --- a/Pipfile.lock +++ /dev/null @@ -1,619 +0,0 @@ -{ - "_meta": { - "hash": { - "sha256": "eb20a6f752cbf495151f478087441410ee5bb4eb3a064f72f5a31aec85c1032d" - }, - "pipfile-spec": 6, - "requires": {}, - "sources": [ - { - "name": "pypi", - "url": "https://pypi.org/simple", - "verify_ssl": true - } - ] - }, - "default": { - "asn1crypto": { - "hashes": [ - "sha256:2f1adbb7546ed199e3c90ef23ec95c5cf3585bac7d11fb7eb562a3fe89c64e87", - "sha256:9d5c20441baf0cb60a4ac34cc447c6c189024b6b4c6cd7877034f4965c464e49" - ], - "version": "==0.24.0" - }, - "astropy": { - "hashes": [ - "sha256:0836c2b08496e98859551fc3f82f78a24276a67d8da2a8a606dbc8d1e438c136", - "sha256:0b57d343f898fc0d0b9f1f63cc23c0d9f32a4c6ffa326f2bdcd1a15de63ad468", - "sha256:0f234986be6e4717eab9a1a67e72686665c22e8d2b9dde6731260a4e660943f8", - "sha256:10091619a67c17824821426deaa8eef0d70b37ecfd99add8bd5ed059783071ed", - "sha256:2b01d9c8972d2c1b103364bfc3a2a005d0ce09cd28ba96659f5cef3907141953", - "sha256:314ed424551a06cc466ca5f6f0105daed6d5dfc32fce752e4ccd7b505ddb74ed", - "sha256:322c05aa8bd7f371ff43e9aebca88a425ca9b6787fbda433bd32c540cc77cb75", - "sha256:46c07a8893c6be3c6d0cc5aa3d9003614af2c416042f22475779839181d98b42", - "sha256:5fcb553002f2782c9cb0e738813d2758c9c027b29cb1f1ea72c8d82ef8dbb467", - "sha256:64caa0955f3c09686103faeae04c77162513b80df1258d500e04d7426dafaf07", - "sha256:6abde36755f9aa46d972fe3868030f0388edaaae420f0640bc2902e18870fe56", - "sha256:7a11b9b35b9309832b991f74ea0eef95bc4f0288255df7ac2da26e7f654ee697", - "sha256:81bae35320d7c72ae8569eeabc596e3a5ed416249b3fb2de9b40f30673085d0b", - "sha256:98d59d9faf8c7a766b7da1e2741c7d7b7b72107588d94b0811f306245bd66c49", - "sha256:b39db24461e25a7711cbf491ca83defe5bc67d88d3b62649fbc2bfce245db0f4", - "sha256:b981ca97ce0b8ac32fdb7d8ee0a72bea1fe528104542c29a763b3da4ff137e40", - "sha256:ba0f47ebf6b922a9a3e8d5c66c9fdc3d2a03fdcfe9d2a4dd4d89f91880fcf3c8", - "sha256:bdf62bb686bb26cfc972bbb3b6d9760d7dbf56f6c30960987de73d45b50479ff", - "sha256:c813f5f3fe2b51621a0ec1d7d61fb6049a36c7bba53cadb91a987e28fc290444", - "sha256:cd7aeced7fbfad6d6b5f5f88aa1055a24e5a3aa8874b3c7dd9cd655c6d9578ab", - "sha256:d85727d114c6d0fd1a3ab9b9e59c60500c7f2bd47637ec88e81f9f690c178001", - "sha256:dd40c7e782c6f91584fb75a589c54d332ad80011b43e150dc8f5ff15e6317e71", - "sha256:f3f8f7b3832288bec74f1937791d75386879a23da5c21de33739138990cf6bd2" - ], - "index": "pypi", - "version": "==2.0.12" - }, - "atomicwrites": { - "hashes": [ - "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", - "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" - ], - "version": "==1.3.0" - }, - "attrs": { - "hashes": [ - "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", - "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" - ], - "version": "==19.1.0" - }, - "cffi": { - "hashes": [ - "sha256:00b97afa72c233495560a0793cdc86c2571721b4271c0667addc83c417f3d90f", - "sha256:0ba1b0c90f2124459f6966a10c03794082a2f3985cd699d7d63c4a8dae113e11", - "sha256:0bffb69da295a4fc3349f2ec7cbe16b8ba057b0a593a92cbe8396e535244ee9d", - "sha256:21469a2b1082088d11ccd79dd84157ba42d940064abbfa59cf5f024c19cf4891", - "sha256:2e4812f7fa984bf1ab253a40f1f4391b604f7fc424a3e21f7de542a7f8f7aedf", - "sha256:2eac2cdd07b9049dd4e68449b90d3ef1adc7c759463af5beb53a84f1db62e36c", - "sha256:2f9089979d7456c74d21303c7851f158833d48fb265876923edcb2d0194104ed", - "sha256:3dd13feff00bddb0bd2d650cdb7338f815c1789a91a6f68fdc00e5c5ed40329b", - "sha256:4065c32b52f4b142f417af6f33a5024edc1336aa845b9d5a8d86071f6fcaac5a", - "sha256:51a4ba1256e9003a3acf508e3b4f4661bebd015b8180cc31849da222426ef585", - "sha256:59888faac06403767c0cf8cfb3f4a777b2939b1fbd9f729299b5384f097f05ea", - "sha256:59c87886640574d8b14910840327f5cd15954e26ed0bbd4e7cef95fa5aef218f", - "sha256:610fc7d6db6c56a244c2701575f6851461753c60f73f2de89c79bbf1cc807f33", - "sha256:70aeadeecb281ea901bf4230c6222af0248c41044d6f57401a614ea59d96d145", - "sha256:71e1296d5e66c59cd2c0f2d72dc476d42afe02aeddc833d8e05630a0551dad7a", - "sha256:8fc7a49b440ea752cfdf1d51a586fd08d395ff7a5d555dc69e84b1939f7ddee3", - "sha256:9b5c2afd2d6e3771d516045a6cfa11a8da9a60e3d128746a7fe9ab36dfe7221f", - "sha256:9c759051ebcb244d9d55ee791259ddd158188d15adee3c152502d3b69005e6bd", - "sha256:b4d1011fec5ec12aa7cc10c05a2f2f12dfa0adfe958e56ae38dc140614035804", - "sha256:b4f1d6332339ecc61275bebd1f7b674098a66fea11a00c84d1c58851e618dc0d", - "sha256:c030cda3dc8e62b814831faa4eb93dd9a46498af8cd1d5c178c2de856972fd92", - "sha256:c2e1f2012e56d61390c0e668c20c4fb0ae667c44d6f6a2eeea5d7148dcd3df9f", - "sha256:c37c77d6562074452120fc6c02ad86ec928f5710fbc435a181d69334b4de1d84", - "sha256:c8149780c60f8fd02752d0429246088c6c04e234b895c4a42e1ea9b4de8d27fb", - "sha256:cbeeef1dc3c4299bd746b774f019de9e4672f7cc666c777cd5b409f0b746dac7", - "sha256:e113878a446c6228669144ae8a56e268c91b7f1fafae927adc4879d9849e0ea7", - "sha256:e21162bf941b85c0cda08224dade5def9360f53b09f9f259adb85fc7dd0e7b35", - "sha256:fb6934ef4744becbda3143d30c6604718871495a5e36c408431bf33d9c146889" - ], - "version": "==1.12.2" - }, - "corner": { - "hashes": [ - "sha256:102e22797ee75d1432b6dc66aa2850f61388996ece66fd6600508742d2a7b88f" - ], - "index": "pypi", - "version": "==2.0.1" - }, - "cryptography": { - "hashes": [ - "sha256:066f815f1fe46020877c5983a7e747ae140f517f1b09030ec098503575265ce1", - "sha256:210210d9df0afba9e000636e97810117dc55b7157c903a55716bb73e3ae07705", - "sha256:26c821cbeb683facb966045e2064303029d572a87ee69ca5a1bf54bf55f93ca6", - "sha256:2afb83308dc5c5255149ff7d3fb9964f7c9ee3d59b603ec18ccf5b0a8852e2b1", - "sha256:2db34e5c45988f36f7a08a7ab2b69638994a8923853dec2d4af121f689c66dc8", - "sha256:409c4653e0f719fa78febcb71ac417076ae5e20160aec7270c91d009837b9151", - "sha256:45a4f4cf4f4e6a55c8128f8b76b4c057027b27d4c67e3fe157fa02f27e37830d", - "sha256:48eab46ef38faf1031e58dfcc9c3e71756a1108f4c9c966150b605d4a1a7f659", - "sha256:6b9e0ae298ab20d371fc26e2129fd683cfc0cfde4d157c6341722de645146537", - "sha256:6c4778afe50f413707f604828c1ad1ff81fadf6c110cb669579dea7e2e98a75e", - "sha256:8c33fb99025d353c9520141f8bc989c2134a1f76bac6369cea060812f5b5c2bb", - "sha256:9873a1760a274b620a135054b756f9f218fa61ca030e42df31b409f0fb738b6c", - "sha256:9b069768c627f3f5623b1cbd3248c5e7e92aec62f4c98827059eed7053138cc9", - "sha256:9e4ce27a507e4886efbd3c32d120db5089b906979a4debf1d5939ec01b9dd6c5", - "sha256:acb424eaca214cb08735f1a744eceb97d014de6530c1ea23beb86d9c6f13c2ad", - "sha256:c8181c7d77388fe26ab8418bb088b1a1ef5fde058c6926790c8a0a3d94075a4a", - "sha256:d4afbb0840f489b60f5a580a41a1b9c3622e08ecb5eec8614d4fb4cd914c4460", - "sha256:d9ed28030797c00f4bc43c86bf819266c76a5ea61d006cd4078a93ebf7da6bfd", - "sha256:e603aa7bb52e4e8ed4119a58a03b60323918467ef209e6ff9db3ac382e5cf2c6" - ], - "version": "==2.6.1" - }, - "cycler": { - "hashes": [ - "sha256:1d8a5ae1ff6c5cf9b93e8811e581232ad8920aeec647c37316ceac982b08cb2d", - "sha256:cd7b2d1018258d7247a71425e9f26463dfb444d411c39569972f4ce586b0c9d8" - ], - "version": "==0.10.0" - }, - "deepdish": { - "hashes": [ - "sha256:2b1d3d2a32356909f2618c382a1829347990ad81b63aaecc87b35a046cd3034c", - "sha256:7858b674ef15ee79828de4892dadd2f58773ead527f3a62aaf1e8ce5a595a074" - ], - "index": "pypi", - "version": "==0.3.6" - }, - "dill": { - "hashes": [ - "sha256:f6d6046f9f9195206063dd0415dff185ad593d6ee8b0e67f12597c0f4df4986f" - ], - "index": "pypi", - "version": "==0.2.9" - }, - "dqsegdb2": { - "hashes": [ - "sha256:51bbe3fc6adf1ca7bb06305dfc684a9f45de96db67c6003eecff1ab26dd8dcc5", - "sha256:f6fb79a80fc5df47672468f914da38c0ea35e8ba78fb247b756769a033f7b961" - ], - "version": "==1.0.1" - }, - "dynesty": { - "hashes": [ - "sha256:46086e582353433f9bd2257210bdfc6d09e011827c4a201ea7853f7d870ab395", - "sha256:eb9aed4f856d084551e54e9939e295f50d232e089286c8d93954afe443cb37d8" - ], - "index": "pypi", - "version": "==0.9.5.3" - }, - "emcee": { - "hashes": [ - "sha256:b83551e342b37311897906b3b8acf32979f4c5542e0a25786ada862d26241172" - ], - "index": "pypi", - "version": "==2.2.1" - }, - "future": { - "hashes": [ - "sha256:67045236dcfd6816dc439556d009594abf643e5eb48992e36beac09c2ca659b8" - ], - "index": "pypi", - "version": "==0.17.1" - }, - "gwdatafind": { - "hashes": [ - "sha256:3b7b586a2fbe87dc3867c38699c50ad8028f8403a6689b21ac6229e0ac127492", - "sha256:5ab0fb818b22a9f10064cfa072967727a8072d7f7d0a3b96c83907e8ce7bd5b6" - ], - "version": "==1.0.4" - }, - "gwosc": { - "hashes": [ - "sha256:7fb8a7bc76c69329c9d8252c523a212bf6ecdfbe6bcdd940652efa60c6e85a8a", - "sha256:f707bdc3b3f9fd6b8b2dceabe770b2fec6a488a1f57b8edc91089d8dac9bf5e3" - ], - "version": "==0.4.3" - }, - "gwpy": { - "hashes": [ - "sha256:28160c9ceef57c61e5feee171db38f61101175817963061b4f2e097560802468", - "sha256:45c4f124cc43d8284520b73f3c35ca571221a00fe3953dd34714d0b859ffd820" - ], - "index": "pypi", - "version": "==0.14.2" - }, - "h5py": { - "hashes": [ - "sha256:05750b91640273c69989c657eaac34b091abdd75efc8c4824c82aaf898a2da0a", - "sha256:082a27208aa3a2286e7272e998e7e225b2a7d4b7821bd840aebf96d50977abbb", - "sha256:08e2e8297195f9e813e894b6c63f79372582787795bba2014a2db6a2de95f713", - "sha256:0dd2adeb2e9de5081eb8dcec88874e7fd35dae9a21557be3a55a3c7d491842a4", - "sha256:0f94de7a10562b991967a66bbe6dda9808e18088676834c0a4dcec3fdd3bcc6f", - "sha256:106e42e2e01e486a3d32eeb9ba0e3a7f65c12fa8998d63625fa41fb8bdc44cdb", - "sha256:1606c66015f04719c41a9863c156fc0e6b992150de21c067444bcb82e7d75579", - "sha256:1854c4beff9961e477e133143c5e5e355dac0b3ebf19c52cf7cc1b1ef757703c", - "sha256:1e9fb6f1746500ea91a00193ce2361803c70c6b13f10aae9a33ad7b5bd28e800", - "sha256:2cca17e80ddb151894333377675db90cd0279fa454776e0a4f74308376afd050", - "sha256:30e365e8408759db3778c361f1e4e0fe8e98a875185ae46c795a85e9bafb9cdf", - "sha256:3206bac900e16eda81687d787086f4ffd4f3854980d798e191a9868a6510c3ae", - "sha256:3c23d72058647cee19b30452acc7895621e2de0a0bd5b8a1e34204b9ea9ed43c", - "sha256:407b5f911a83daa285bbf1ef78a9909ee5957f257d3524b8606be37e8643c5f0", - "sha256:4162953714a9212d373ac953c10e3329f1e830d3c7473f2a2e4f25dd6241eef0", - "sha256:5fc7aba72a51b2c80605eba1c50dbf84224dcd206279d30a75c154e5652e1fe4", - "sha256:713ac19307e11de4d9833af0c4bd6778bde0a3d967cafd2f0f347223711c1e31", - "sha256:71b946d80ef3c3f12db157d7778b1fe74a517ca85e94809358b15580983c2ce2", - "sha256:8cc4aed71e20d87e0a6f02094d718a95252f11f8ed143bc112d22167f08d4040", - "sha256:9d41ca62daf36d6b6515ab8765e4c8c4388ee18e2a665701fef2b41563821002", - "sha256:a744e13b000f234cd5a5b2a1f95816b819027c57f385da54ad2b7da1adace2f3", - "sha256:b087ee01396c4b34e9dc41e3a6a0442158206d383c19c7d0396d52067b17c1cb", - "sha256:b0f03af381d33306ce67d18275b61acb4ca111ced645381387a02c8a5ee1b796", - "sha256:b9e4b8dfd587365bdd719ae178fa1b6c1231f81280b1375eef8626dfd8761bf3", - "sha256:c5dd4ec75985b99166c045909e10f0534704d102848b1d9f0992720e908928e7", - "sha256:d2b82f23cd862a9d05108fe99967e9edfa95c136f532a71cb3d28dc252771f50", - "sha256:e58a25764472af07b7e1c4b10b0179c8ea726446c7141076286e41891bf3a563", - "sha256:f3b49107fbfc77333fc2b1ef4d5de2abcd57e7ea3a1482455229494cf2da56ce" - ], - "version": "==2.9.0" - }, - "joblib": { - "hashes": [ - "sha256:11cdfd38cdb71768149e1373f2509e9b4fc1ec6bc92f874cb515b25f2d69f8f4", - "sha256:142e74bee7b9dfad75c7dad24c4295b9084a6788116dd149e2fc7daf0db25675" - ], - "version": "==0.12.5" - }, - "kiwisolver": { - "hashes": [ - "sha256:0ee4ed8b3ae8f5f712b0aa9ebd2858b5b232f1b9a96b0943dceb34df2a223bc3", - "sha256:0f7f532f3c94e99545a29f4c3f05637f4d2713e7fd91b4dd8abfc18340b86cd5", - "sha256:1a078f5dd7e99317098f0e0d490257fd0349d79363e8c923d5bb76428f318421", - "sha256:1aa0b55a0eb1bd3fa82e704f44fb8f16e26702af1a073cc5030eea399e617b56", - "sha256:2874060b91e131ceeff00574b7c2140749c9355817a4ed498e82a4ffa308ecbc", - "sha256:379d97783ba8d2934d52221c833407f20ca287b36d949b4bba6c75274bcf6363", - "sha256:3b791ddf2aefc56382aadc26ea5b352e86a2921e4e85c31c1f770f527eb06ce4", - "sha256:4329008a167fac233e398e8a600d1b91539dc33c5a3eadee84c0d4b04d4494fa", - "sha256:45813e0873bbb679334a161b28cb9606d9665e70561fd6caa8863e279b5e464b", - "sha256:53a5b27e6b5717bdc0125338a822605084054c80f382051fb945d2c0e6899a20", - "sha256:574f24b9805cb1c72d02b9f7749aa0cc0b81aa82571be5201aa1453190390ae5", - "sha256:66f82819ff47fa67a11540da96966fb9245504b7f496034f534b81cacf333861", - "sha256:79e5fe3ccd5144ae80777e12973027bd2f4f5e3ae8eb286cabe787bed9780138", - "sha256:83410258eb886f3456714eea4d4304db3a1fc8624623fc3f38a487ab36c0f653", - "sha256:8b6a7b596ce1d2a6d93c3562f1178ebd3b7bb445b3b0dd33b09f9255e312a965", - "sha256:9576cb63897fbfa69df60f994082c3f4b8e6adb49cccb60efb2a80a208e6f996", - "sha256:95a25d9f3449046ecbe9065be8f8380c03c56081bc5d41fe0fb964aaa30b2195", - "sha256:a424f048bebc4476620e77f3e4d1f282920cef9bc376ba16d0b8fe97eec87cde", - "sha256:aaec1cfd94f4f3e9a25e144d5b0ed1eb8a9596ec36d7318a504d813412563a85", - "sha256:acb673eecbae089ea3be3dcf75bfe45fc8d4dcdc951e27d8691887963cf421c7", - "sha256:b15bc8d2c2848a4a7c04f76c9b3dc3561e95d4dabc6b4f24bfabe5fd81a0b14f", - "sha256:b1c240d565e977d80c0083404c01e4d59c5772c977fae2c483f100567f50847b", - "sha256:c595693de998461bcd49b8d20568c8870b3209b8ea323b2a7b0ea86d85864694", - "sha256:ce3be5d520b4d2c3e5eeb4cd2ef62b9b9ab8ac6b6fedbaa0e39cdb6f50644278", - "sha256:e0f910f84b35c36a3513b96d816e6442ae138862257ae18a0019d2fc67b041dc", - "sha256:ea36e19ac0a483eea239320aef0bd40702404ff8c7e42179a2d9d36c5afcb55c", - "sha256:efabbcd4f406b532206b8801058c8bab9e79645b9880329253ae3322b7b02cd5", - "sha256:f923406e6b32c86309261b8195e24e18b6a8801df0cfc7814ac44017bfcb3939" - ], - "version": "==1.0.1" - }, - "lalsuite": { - "hashes": [ - "sha256:20b167494933c1b9f7780ef4eaadda5382d0c7e794f2173ee3f59dc7f471635b", - "sha256:4b3b77d1cbe7b9e30db8d4cac3d08daf7de3d62ed516f3d7852dcbb52945c769", - "sha256:6ed64d24ba66e48bfbf72073299d01eb67e20a9787ad7e7f7f55f275acfccc84", - "sha256:714319e1926252cc7a932401bedc607ccea4ea595ca2a9e0e53a3bd13398ad62", - "sha256:99ca89d95ca518e2fdf2ba6681fed6d09ab89cde88333755ef48b4ce20064ca0", - "sha256:9c84ddc2e19187a2f2e8a463298a0168b634e6af484557fdb15f7d6940063713", - "sha256:ae280692119f3d13170e25acc13d521e592763100dd1aa61d230e367ca0d2a9d", - "sha256:b16136a0532fd6c05490e100577621259d99c189c5f589bbc14aaeba157c173f", - "sha256:c051c77a8f03994414f10445269254c6e0a01df30f560c4d06c0f4d72c06d6d5", - "sha256:f663d2811f16d8ebe93baacde46337b844cb88c95434b11c45b2151de1db9a83" - ], - "index": "pypi", - "version": "==6.53" - }, - "ligo-segments": { - "hashes": [ - "sha256:5edbcb88cae007c4e154a61cb2c9d0a6d6d4016c1ecaf0a59a667a267bd20e7a" - ], - "version": "==1.2.0" - }, - "ligotimegps": { - "hashes": [ - "sha256:48a8bd249e1822ddb484e4e59477654c333d1fe7d6b0de37249b2dcae72c5c99", - "sha256:79ee18df7f6806d522f68d278b0ac426094626a479af58c178f32d2b319919ba" - ], - "index": "pypi", - "version": "==1.2.3" - }, - "lscsoft-glue": { - "hashes": [ - "sha256:9bdfaebe4c921d83d1e3d1ca24379a644665e9d7530e7070665f387767c66923" - ], - "version": "==2.0.0" - }, - "matplotlib": { - "hashes": [ - "sha256:029620799e581802961ac1dcff5cb5d3ee2f602e0db9c0f202a90495b37d2126", - "sha256:2308f67e085735ed580fcace652339cb517f059cdc9ee8a418c1b55746dbffcb", - "sha256:280aebaec25575e35bf7d1b3ebb2d8ae7e839edb5a403f1a121b7271744b1ef9", - "sha256:295099acb5a8a1148d1b4693ad1a93479a20836cd8b7eb38183a98c84cdcb2f1", - "sha256:75d44c55eb87af653afc3d0a37ab62ab4784c752be0e7c96622713d88ed57e64", - "sha256:95d9d7c2d7f0c7a4317acbcf1a81efa0a2ce5cb5ddfad606ae4c25a783431f0a", - "sha256:9703ffc3e7e369f3ab31d0032719710876cb341eb618e1a8a54447e1946a9f0a", - "sha256:9ff80541d5676207c6e829632b28e22d9875ecaae54eab7a7f8fd82a6552e5e9", - "sha256:a6a04ebd81b3183e7882c9047a9514b7f547b2bae5e4f61a02eaaa6b446bde54", - "sha256:b22b0d3b8d8f769c6ac559f6761878d660bd23d67b36430f07161caf1505c29c", - "sha256:b464d598e36e13f7d798443805f2ba6b4af3d26fc1652c51c77a7847cf665813", - "sha256:c0fa162920185d5d74e6fdf52c1f8cca0fbf897025a9dd81e030cf08a915865a", - "sha256:c452b7aff0a9e4612670a4590e6efc30929dad620a121d423c8f3d0bd93715e2", - "sha256:c90fc796e97815ea3bbbdea63c1e4edf75336361a49b945fdbc2aff1c76008c6", - "sha256:cc1d376963ea9c97338582f3f9d64757c51e71cf2655efe363a3f2414d84aac2", - "sha256:d3f5dfaa345539599308bd83826db242e424e3f4e9657952f8738ce1b5b90e8a", - "sha256:d9e80ba0ffdb0daacaf49e561474d5c5c153d6db853478cf90c8cba5ed8b72b1", - "sha256:daac44fc77cf36ff01953e2acc57a843fb1f6572eb5bf0af10a2930fa7407715", - "sha256:de43c85335d71094a254e8538719752e30db3305005dae8dcb3097b72587ed07", - "sha256:e4621af28a2444f93b5b6d3d60f54767df8ac6daa510a98f68c34377cb474869", - "sha256:f3755a52aae7fb640f5f57b7b63eb5d65688c84931d7833dbc7d03959cd4f8ce", - "sha256:f99c43df8ed2b9d1c95a042f3cacf017f9690092feba0b4292eaa6713f92de97" - ], - "index": "pypi", - "version": "==2.2.4" - }, - "mock": { - "hashes": [ - "sha256:5ce3c71c5545b472da17b72268978914d0252980348636840bd34a00b5cc96c1", - "sha256:b158b6df76edd239b8208d481dc46b6afd45a846b7812ff0ce58971cf5bc8bba" - ], - "index": "pypi", - "version": "==2.0.0" - }, - "more-itertools": { - "hashes": [ - "sha256:2112d2ca570bb7c3e53ea1a35cd5df42bb0fd10c45f0fb97178679c3c03d64c7", - "sha256:c3e4748ba1aad8dba30a4886b0b1a2004f9a863837b8654e7059eebf727afa5a" - ], - "version": "==7.0.0" - }, - "nestle": { - "hashes": [ - "sha256:5de798feebbc122b3680e2a1c916ec09934e3afc6171d220de2914ca31c3246d" - ], - "index": "pypi", - "version": "==0.2.0" - }, - "numexpr": { - "hashes": [ - "sha256:066d7202d3374d42203ce8ba2b007f14397fd083946abafebbc962215ead1759", - "sha256:08196ac987324dc02147abcf1883b192aa5cd1a56a07c725310f1d0d703d5301", - "sha256:37b04292cbb1e20bfb3428d5aeebe2bdd13368d458e508998087e40b68d8cc95", - "sha256:426053be016a3584a10cae13f18692938ff7314988f69edd367b4ff60b370b5b", - "sha256:47c205a2bca8477eaaa766ca2b86001ca0df4b61ae407196a3ba2420932b5dca", - "sha256:4b65fe1b4565ccaab7a3617da1bd046987fb7dbc0bbe34e56aa08b05857259d1", - "sha256:5839cd5f95b4088659cc5f6d25936c6a03a75c23be37f94a2885db0f6f234531", - "sha256:5fe05f123e00170370c759734c395e5a4ae0ad4e6a3d370fd73e0dcd6669e665", - "sha256:62d2853df0233fc04374679de20f39b93fdb7a664a0ee403fdb8e722328c5d4d", - "sha256:688a25cfcd7be6fcce3f6d59fffca6105541e7a1598144b545b633a266e94113", - "sha256:6a0470a6c07eaa6aa27affb9ee89ce91070747e44172870b020fd3ebe318950a", - "sha256:6b70a0c372bb567ddb3039d046cccede284cee2a43688010a4110f6b2fe59421", - "sha256:7f4e121bd59f3b5f7bbd9ca8873c815277c4994b22cfff8a7d57bdef9d00e939", - "sha256:8213a3e84f3afadc0a4ab1fc0dab383482297f36dbf84b690bbe698b9b8c2ece", - "sha256:97920e6c37553571ce55f951080d9e2b28589c1337c3788b5ae66dae3a0131d2", - "sha256:9992ef8b9598a62364d46d4cb2f0f6285f4c77115f023dca821a50550044d8fc", - "sha256:9c6b4dfcc978ad50a72f83fbaf0fe4706088f3b2623e365bc05036db4948e15d", - "sha256:9ef58b5f8debcf0c573968f44709866210696aa476b0d22d9afe88da2bd70add", - "sha256:a64bfd49359df8f87c34ed601ce857213d8678e314d8c99b972b36e35ff8f98f", - "sha256:aa5b238af8f2915b39374d764ec0daa3d0a975a798f162c3ca30f1cd9fa9a274", - "sha256:ae5c73f7412b7e70c88f6b384ad61e123d909b0c81a8d5edd33239eb9b5b3111", - "sha256:c3850466765b9b374ff2ff40974a7b4b278b875f94314e038043f534aff8e139", - "sha256:e99213c7fa5ffd5572afe065bab7a8507d750221e3fbba43fc15151056d108a1", - "sha256:eac513cd2424c5f1b2c75bcb06402da407d74bb6f72584d599218228060c2468", - "sha256:ecb0d0a1ac843f2b8c7afdc0c3ec4fcfcc275bbd0750065cc4112fcd14904c90", - "sha256:ed96bc38a37fc34406ef76595235e5966d7d3a4123018e9a91d1b7307b4af425", - "sha256:ee4c526517d89f92c9b9f9c1937ab15c9e3d33864213b4488e1dd30fbc43c87f", - "sha256:fc218b777cdbb14fa8cff8f28175ee631bacabbdd41ca34e061325b6c44a6fa6" - ], - "version": "==2.6.9" - }, - "numpy": { - "hashes": [ - "sha256:1b1cf8f7300cf7b11ddb4250b3898c711a6187df05341b5b7153db23ffe5d498", - "sha256:27a0d018f608a3fe34ac5e2b876f4c23c47e38295c47dd0775cc294cd2614bc1", - "sha256:3fde172e28c899580d32dc21cb6d4a1225d62362f61050b654545c662eac215a", - "sha256:497d7c86df4f85eb03b7f58a7dd0f8b948b1f582e77629341f624ba301b4d204", - "sha256:4e28e66cf80c09a628ae680efeb0aa9a066eb4bb7db2a5669024c5b034891576", - "sha256:58be95faf0ca2d886b5b337e7cba2923e3ad1224b806a91223ea39f1e0c77d03", - "sha256:5b4dfb6551eaeaf532054e2c6ef4b19c449c2e3a709ebdde6392acb1372ecabc", - "sha256:63f833a7c622e9082df3cbaf03b4fd92d7e0c11e2f9d87cb57dbf0e84441964b", - "sha256:71bf3b7ca15b1967bba3a1ef6a8e87286382a8b5e46ac76b42a02fe787c5237d", - "sha256:733dc5d47e71236263837825b69c975bc08728ae638452b34aeb1d6fa347b780", - "sha256:82f00a1e2695a0e5b89879aa25ea614530b8ebdca6d49d4834843d498e8a5e92", - "sha256:866bf72b9c3bfabe4476d866c70ee1714ad3e2f7b7048bb934892335e7b6b1f7", - "sha256:8aeac8b08f4b8c52129518efcd93706bb6d506ccd17830b67d18d0227cf32d9e", - "sha256:8d2cfb0aef7ec8759736cce26946efa084cdf49797712333539ef7d135e0295e", - "sha256:981224224bbf44d95278eb37996162e8beb6f144d2719b144e86dfe2fce6c510", - "sha256:981daff58fa3985a26daa4faa2b726c4e7a1d45178100125c0e1fdaf2ac64978", - "sha256:9ad36dbfdbb0cba90a08e7343fadf86f43cf6d87450e8d2b5d71d7c7202907e4", - "sha256:a251570bb3cb04f1627f23c234ad09af0e54fc8194e026cf46178f2e5748d647", - "sha256:b5ff7dae352fd9e1edddad1348698e9fea14064460a7e39121ef9526745802e6", - "sha256:c898f9cca806102fcacb6309899743aa39efb2ad2a302f4c319f54db9f05cd84", - "sha256:cf4b970042ce148ad8dce4369c02a4078b382dadf20067ce2629c239d76460d1", - "sha256:d1569013e8cc8f37e9769d19effdd85e404c976cd0ca28a94e3ddc026c216ae8", - "sha256:dca261e85fe0d34b2c242ecb31c9ab693509af2cf955d9caf01ee3ef3669abd0", - "sha256:ec8bf53ef7c92c99340972519adbe122e82c81d5b87cbd955c74ba8a8cd2a4ad", - "sha256:f2e55726a9ee2e8129d6ce6abb466304868051bcc7a09d652b3b07cd86e801a2", - "sha256:f4dee74f2626c783a3804df9191e9008946a104d5a284e52427a53ff576423cb", - "sha256:f592fd7fe1f20b5041928cce1330937eca62f9058cb41e69c2c2d83cffc0d1e3", - "sha256:ffab5b80bba8c86251291b8ce2e6c99a61446459d4c6637f5d5cc8c9ce37c972" - ], - "index": "pypi", - "version": "==1.15.2" - }, - "pandas": { - "hashes": [ - "sha256:295cf212054b28f1d111f3ffff932a012601558424ec892f2450d6197f6eeb92", - "sha256:29960ea1783c59fe86b323799b130592149e0f7bb739149e7fc512b0272d9fc3", - "sha256:29dde0874d1efb8a346f8d919b0530a9ae788ad1003752376133e38df09e6fcb", - "sha256:2d6b7b152a6ba44627c60df291f773c4438df01653abcbec7fc556d6039f1705", - "sha256:5de7275fc7222211dcac603ea81f1e143c45f8ec41d2e21df71aad0c95c1097c", - "sha256:7261b3567804a70714cc2591e2f7f1e372379db9e140f9d7ffb4b8884eaa48f7", - "sha256:758b8f6c68bc99b2eb64e57092d3aa07bd68a774e92e7686e473e0d9c86a2309", - "sha256:835c5a2aeaa3cb5ef2a1d771c75ee3a73d6ad1b82cfc54677c8f863c75fa51bd", - "sha256:8398d7a47ae667a639ac4ee6724d7ef98602b5ff2b10b5b4d5e6ab45a8d596d2", - "sha256:84ab1d50590cb2d9554211f164dc1b1a216bc94da2ba922aed2690c83f248fd9", - "sha256:98054c04318ba46bb81433230c2e5fab6a68df916ccb5355d428907bfb16b257", - "sha256:9e5ee41d1550ec36093c95e30644e313df4b57c1cdead545754d9c113aecbbb5", - "sha256:d4495aba61060d87c634fc777ac15aecd1d176987e5ed0585a3ed7e2f4e6c1f7", - "sha256:d5f72c8239e46cfcc363c7e532a474b7ea3d8892b7b6e5ec0da6b3ebae2a07d3", - "sha256:d88f484a25ac212fd720b5f9b9686e83f86df2b091b51f4b7b1d9089bd842f79" - ], - "index": "pypi", - "version": "==0.23.0" - }, - "patsy": { - "hashes": [ - "sha256:5465be1c0e670c3a965355ec09e9a502bf2c4cbe4875e8528b0221190a8a5d40", - "sha256:f115cec4201e1465cd58b9866b0b0e7b941caafec129869057405bfe5b5e3991" - ], - "version": "==0.5.1" - }, - "pbr": { - "hashes": [ - "sha256:8257baf496c8522437e8a6cfe0f15e00aedc6c0e0e7c9d55eeeeab31e0853843", - "sha256:8c361cc353d988e4f5b998555c88098b9d5964c2e11acf7b0d21925a66bb5824" - ], - "version": "==5.1.3" - }, - "pluggy": { - "hashes": [ - "sha256:6e3836e39f4d36ae72840833db137f7b7d35105079aee6ec4a62d9f80d594dd1", - "sha256:95eb8364a4708392bae89035f45341871286a333f749c3141c20573d2b3876e1" - ], - "version": "==0.7.1" - }, - "ptemcee": { - "hashes": [ - "sha256:58e7c1d9a477acd808668b5caa5cb4d61fc5f6cd1df02a391d0d04cd14453739" - ], - "index": "pypi", - "version": "==1.0.0" - }, - "py": { - "hashes": [ - "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", - "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" - ], - "version": "==1.8.0" - }, - "pycparser": { - "hashes": [ - "sha256:a988718abfad80b6b157acce7bf130a30876d27603738ac39f140993246b25b3" - ], - "version": "==2.19" - }, - "pymc3": { - "hashes": [ - "sha256:c00c0778d2451a348a9508f8b956fe280a0f9affd3f85140ac3948bc2902f5e9" - ], - "index": "pypi", - "version": "==3.6" - }, - "pyopenssl": { - "hashes": [ - "sha256:aeca66338f6de19d1aa46ed634c3b9ae519a64b458f8468aec688e7e3c20f200", - "sha256:c727930ad54b10fc157015014b666f2d8b41f70c0d03e83ab67624fd3dd5d1e6" - ], - "version": "==19.0.0" - }, - "pyparsing": { - "hashes": [ - "sha256:1873c03321fc118f4e9746baf201ff990ceb915f433f23b395f5580d1840cb2a", - "sha256:9b6323ef4ab914af344ba97510e966d64ba91055d6b9afa6b30799340e89cc03" - ], - "version": "==2.4.0" - }, - "pytest": { - "hashes": [ - "sha256:341ec10361b64a24accaec3c7ba5f7d5ee1ca4cebea30f76fad3dd12db9f0541", - "sha256:952c0389db115437f966c4c2079ae9d54714b9455190e56acebe14e8c38a7efa" - ], - "version": "==3.6.4" - }, - "python-dateutil": { - "hashes": [ - "sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb", - "sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e" - ], - "version": "==2.8.0" - }, - "pytz": { - "hashes": [ - "sha256:303879e36b721603cc54604edcac9d20401bdbe31e1e4fdee5b9f98d5d31dfda", - "sha256:d747dd3d23d77ef44c6a3526e274af6efeb0a6f1afd5a69ba4d5be4098c8e141" - ], - "version": "==2019.1" - }, - "scipy": { - "hashes": [ - "sha256:014cb900c003b5ac81a53f2403294e8ecf37aedc315b59a6b9370dce0aa7627a", - "sha256:281a34da34a5e0de42d26aed692ab710141cad9d5d218b20643a9cb538ace976", - "sha256:588f9cc4bfab04c45fbd19c1354b5ade377a8124d6151d511c83730a9b6b2338", - "sha256:5a10661accd36b6e2e8855addcf3d675d6222006a15795420a39c040362def66", - "sha256:628f60be272512ca1123524969649a8cb5ae8b31cca349f7c6f8903daf9034d7", - "sha256:6dcc43a88e25b815c2dea1c6fac7339779fc988f5df8396e1de01610604a7c38", - "sha256:70e37cec0ac0fe95c85b74ca4e0620169590fd5d3f44765f3c3a532cedb0e5fd", - "sha256:7274735fb6fb5d67d3789ddec2cd53ed6362539b41aa6cc0d33a06c003aaa390", - "sha256:78e12972e144da47326958ac40c2bd1c1cca908edc8b01c26a36f9ffd3dce466", - "sha256:790cbd3c8d09f3a6d9c47c4558841e25bac34eb7a0864a9def8f26be0b8706af", - "sha256:79792c8fe8e9d06ebc50fe23266522c8c89f20aa94ac8e80472917ecdce1e5ba", - "sha256:865afedf35aaef6df6344bee0de391ee5e99d6e802950a237f9fb9b13e441f91", - "sha256:870fd401ec7b64a895cff8e206ee16569158db00254b2f7157b4c9a5db72c722", - "sha256:963815c226b29b0176d5e3d37fc9de46e2778ce4636a5a7af11a48122ef2577c", - "sha256:9726791484f08e394af0b59eb80489ad94d0a53bbb58ab1837dcad4d58489863", - "sha256:9de84a71bb7979aa8c089c4fb0ea0e2ed3917df3fb2a287a41aaea54bbad7f5d", - "sha256:b2c324ddc5d6dbd3f13680ad16a29425841876a84a1de23a984236d1afff4fa6", - "sha256:b86ae13c597fca087cb8c193870507c8916cefb21e52e1897da320b5a35075e5", - "sha256:ba0488d4dbba2af5bf9596b849873102d612e49a118c512d9d302ceafa36e01a", - "sha256:d78702af4102a3a4e23bb7372cec283e78f32f5573d92091aa6aaba870370fe1", - "sha256:def0e5d681dd3eb562b059d355ae8bebe27f5cc455ab7c2b6655586b63d3a8ea", - "sha256:e085d1babcb419bbe58e2e805ac61924dac4ca45a07c9fa081144739e500aa3c", - "sha256:e2cfcbab37c082a5087aba5ff00209999053260441caadd4f0e8f4c2d6b72088", - "sha256:e742f1f5dcaf222e8471c37ee3d1fd561568a16bb52e031c25674ff1cf9702d5", - "sha256:f06819b028b8ef9010281e74c59cb35483933583043091ed6b261bb1540f11cc", - "sha256:f15f2d60a11c306de7700ee9f65df7e9e463848dbea9c8051e293b704038da60", - "sha256:f31338ee269d201abe76083a990905473987371ff6f3fdb76a3f9073a361cf37", - "sha256:f6b88c8d302c3dac8dff7766955e38d670c82e0d79edfc7eae47d6bb2c186594" - ], - "index": "pypi", - "version": "==1.2.1" - }, - "six": { - "hashes": [ - "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", - "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" - ], - "version": "==1.12.0" - }, - "tables": { - "hashes": [ - "sha256:08ebb38c46a3833acb297f4d9fbb256ed28e0671cb0edef7e4ab6b29134d2f9d", - "sha256:102e55c6c85790ae58a202d3e1e82b78c8f3bf2ab38490f2b01d7ec9010165de", - "sha256:1fcf8802f8715731424277ffdd1faf4428371f40aefee1f8b1a14ef8d775ded0", - "sha256:221f1734ce6318cbf95994c574d78a3f56d57635effd474911116af20d9158cb", - "sha256:2fcfd88df0a081e7624d80dd991f25ba23f9300950289aa5766b8625db70ec3a", - "sha256:3354d8d7e9638b6afc8e86b8858576314abac7e8479081c55f43907532866f37", - "sha256:39c9a942cf1179504d9fe73d00d07c3ae7b434bab822b1ad07dc345442eeb39e", - "sha256:3f744c006dfc105a0e4674ba4bdad68c2cb9ea2dfd2bb5cb4eb43d87602e8a28", - "sha256:45987da933b549ae5592a4da9b5bb4e6519eaeada01f2838c301c0ee5b0bc774", - "sha256:51032a5976f65fcb076b29cd7337b272539bf034aeb1dc3e9c0d28df7d94e2e1", - "sha256:56967b8497b1aa898b43525e95e2e8b3085f20c30f2f6638af3e59e8cdf340ac", - "sha256:5b6035ecfff22deb7b82c35e34caa21a92134704af9b60ab006e562061f119f1", - "sha256:5fc2813c1ef24c88483e0accfd3ce971cfa6e47bbc00538c6d5b06c9ec2675e9", - "sha256:66880416323b9e00c88f372f57210bc716d14c63eec8afc5dbeed7701955e754", - "sha256:6aced515f538c2c45afb3c7951df3cea3e9f37df5ef7743e233b35905b7a1d58", - "sha256:779d51bf969626b92738847686a44aeb9d48a92af9f38b94ad7b9f455fd65f58", - "sha256:81d036e5c1f3912698507f176499a820e0c6f1f5bf7fa135acd5dc331de95204", - "sha256:88e2f3be1f143febc8bf8a7fe49ad51fc12518d6a1ac4eb641778d93e5dc2039", - "sha256:9d65f20af462e1e735414937225d50e126ba4cdca91d5908b0994a3f7d457666", - "sha256:b17af3f07c9b1afc723742c9f067fa8b3bd034676ca4eefaca8d251f22693342", - "sha256:b22284e1d9fd4bd3ea4d357ce939078c44af4b23b9a2a3f1189a54a67a93f57a", - "sha256:d8f4091ca8f521ddea0e7702269b87a721443439981f9ab06544e3dcd6ed314b", - "sha256:fb7a873a86dfc801256cd295547d7fae2632a09cf37a349f9951a593a178bdc3" - ], - "version": "==3.5.1" - }, - "theano": { - "hashes": [ - "sha256:35c9bbef56b61ffa299265a42a4e8f8cb5a07b2997dabaef0f8830b397086913" - ], - "index": "pypi", - "version": "==1.0.4" - }, - "tqdm": { - "hashes": [ - "sha256:d385c95361699e5cf7622485d9b9eae2d4864b21cd5a2374a9c381ffed701021", - "sha256:e22977e3ebe961f72362f6ddfb9197cc531c9737aaf5f607ef09740c849ecd05" - ], - "version": "==4.31.1" - } - }, - "develop": {} -} diff --git a/bilby/core/prior/dict.py b/bilby/core/prior/dict.py index 3324daf3b04fb6589f36326c180072c46ce6672e..a375625b3082ecf54d9005ff85fef766671386b2 100644 --- a/bilby/core/prior/dict.py +++ b/bilby/core/prior/dict.py @@ -1,14 +1,12 @@ from importlib import import_module from io import open as ioopen import json -import numpy as np import os from future.utils import iteritems from matplotlib.cbook import flatten +import numpy as np -# keep 'import *' to make eval() statement further down work consistently -from bilby.core.prior.analytical import * # noqa from bilby.core.prior.analytical import DeltaFunction from bilby.core.prior.base import Prior, Constraint from bilby.core.prior.joint import JointPrior @@ -142,7 +140,6 @@ class PriorDict(dict): comments = ['#', '\n'] prior = dict() - mvgdict = dict(inf=np.inf) # evaluate inf as np.inf with ioopen(filename, 'r', encoding='unicode_escape') as f: for line in f: if line[0] in comments: @@ -151,39 +148,8 @@ class PriorDict(dict): elements = line.split('=') key = elements[0].replace(' ', '') val = '='.join(elements[1:]).strip() - cls = val.split('(')[0] - args = '('.join(val.split('(')[1:])[:-1] - try: - prior[key] = DeltaFunction(peak=float(cls)) - logger.debug("{} converted to DeltaFunction prior".format( - key)) - continue - except ValueError: - pass - if "." in cls: - module = '.'.join(cls.split('.')[:-1]) - cls = cls.split('.')[-1] - else: - module = __name__.replace('.' + os.path.basename(__file__).replace('.py', ''), '') - cls = getattr(import_module(module), cls, cls) - if key.lower() in ["conversion_function", "condition_func"]: - setattr(self, key, cls) - elif (cls.__name__ in ['MultivariateGaussianDist', - 'MultivariateNormalDist']): - if key not in mvgdict: - mvgdict[key] = eval(val, None, mvgdict) - elif (cls.__name__ in ['MultivariateGaussian', - 'MultivariateNormal']): - prior[key] = eval(val, None, mvgdict) - else: - try: - prior[key] = cls.from_repr(args) - except TypeError as e: - raise TypeError( - "Unable to parse dictionary file {}, bad line: {} " - "= {}. Error message {}".format( - filename, key, val, e)) - self.update(prior) + prior[key] = val + self.from_dictionary(prior) @classmethod def _get_from_json_dict(cls, prior_dict): @@ -218,22 +184,61 @@ class PriorDict(dict): return obj def from_dictionary(self, dictionary): + eval_dict = dict(inf=np.inf) for key, val in iteritems(dictionary): - if isinstance(val, str): + if isinstance(val, Prior): + continue + elif isinstance(val, (int, float)): + dictionary[key] = DeltaFunction(peak=val) + elif isinstance(val, str): + cls = val.split('(')[0] + args = '('.join(val.split('(')[1:])[:-1] try: - prior = eval(val) - if isinstance(prior, (Prior, float, int, str)): - val = prior - except (NameError, SyntaxError, TypeError): - logger.debug( - "Failed to load dictionary value {} correctly" - .format(key)) + dictionary[key] = DeltaFunction(peak=float(cls)) + logger.debug("{} converted to DeltaFunction prior".format(key)) + continue + except ValueError: pass + if "." in cls: + module = '.'.join(cls.split('.')[:-1]) + cls = cls.split('.')[-1] + else: + module = __name__.replace( + '.' + os.path.basename(__file__).replace('.py', ''), '' + ) + cls = getattr(import_module(module), cls, cls) + if key.lower() in ["conversion_function", "condition_func"]: + setattr(self, key, cls) + elif isinstance(cls, str): + if "(" in val: + raise TypeError("Unable to parse prior class {}".format(cls)) + else: + continue + elif (cls.__name__ in ['MultivariateGaussianDist', + 'MultivariateNormalDist']): + if key not in eval_dict: + eval_dict[key] = eval(val, None, eval_dict) + elif (cls.__name__ in ['MultivariateGaussian', + 'MultivariateNormal']): + dictionary[key] = eval(val, None, eval_dict) + else: + try: + dictionary[key] = cls.from_repr(args) + except TypeError as e: + raise TypeError( + "Unable to parse prior, bad entry: {} " + "= {}. Error message {}".format(key, val, e) + ) elif isinstance(val, dict): logger.warning( 'Cannot convert {} into a prior object. ' 'Leaving as dictionary.'.format(key)) - self[key] = val + else: + raise TypeError( + "Unable to parse prior, bad entry: {} " + "= {} of type {}".format(key, val, type(val)) + ) + self.update(dictionary) def convert_floats_to_delta_functions(self): """ Convert all float parameters to delta functions """ diff --git a/bilby/core/result.py b/bilby/core/result.py index 630830dfc3830de9f6e338e88f469523bfa3f988..19b372096ce367f30f0f85d88da8b5f492a0ad86 100644 --- a/bilby/core/result.py +++ b/bilby/core/result.py @@ -20,7 +20,7 @@ from . import utils from .utils import (logger, infer_parameters_from_function, check_directory_exists_and_if_not_mkdir,) from .utils import BilbyJsonEncoder, decode_bilby_json -from .prior import Prior, PriorDict, DeltaFunction, ConditionalPriorDict +from .prior import Prior, PriorDict, DeltaFunction def result_file_name(outdir, label, extension='json', gzip=False): @@ -276,15 +276,15 @@ class Result(object): if getattr(self, 'posterior', None) is not None: if getattr(self, 'log_noise_evidence', None) is not None: return ("nsamples: {:d}\n" - "log_noise_evidence: {:6.3f}\n" - "log_evidence: {:6.3f} +/- {:6.3f}\n" - "log_bayes_factor: {:6.3f} +/- {:6.3f}\n" + "ln_noise_evidence: {:6.3f}\n" + "ln_evidence: {:6.3f} +/- {:6.3f}\n" + "ln_bayes_factor: {:6.3f} +/- {:6.3f}\n" .format(len(self.posterior), self.log_noise_evidence, self.log_evidence, self.log_evidence_err, self.log_bayes_factor, self.log_evidence_err)) else: return ("nsamples: {:d}\n" - "log_evidence: {:6.3f} +/- {:6.3f}\n" + "ln_evidence: {:6.3f} +/- {:6.3f}\n" .format(len(self.posterior), self.log_evidence, self.log_evidence_err)) else: return '' @@ -299,7 +299,7 @@ class Result(object): @priors.setter def priors(self, priors): if isinstance(priors, dict): - if isinstance(priors, ConditionalPriorDict): + if isinstance(priors, PriorDict): self._priors = priors else: self._priors = PriorDict(priors) @@ -389,6 +389,22 @@ class Result(object): def posterior(self, posterior): self._posterior = posterior + @property + def log_10_bayes_factor(self): + return self.log_bayes_factor / np.log(10) + + @property + def log_10_evidence(self): + return self.log_evidence / np.log(10) + + @property + def log_10_evidence_err(self): + return self.log_evidence_err / np.log(10) + + @property + def log_10_noise_evidence(self): + return self.log_noise_evidence / np.log(10) + @property def version(self): return self._version @@ -1526,8 +1542,9 @@ def plot_multiple(results, filename=None, labels=None, colours=None, return fig -def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9, +def make_pp_plot(results, filename=None, save=True, confidence_interval=[0.68, 0.95, 0.997], lines=None, legend_fontsize='x-small', keys=None, title=True, + confidence_interval_alpha=0.1, **kwargs): """ Make a P-P plot for a set of runs with injected signals. @@ -1540,8 +1557,8 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9, The name of the file to save, the default is "outdir/pp.png" save: bool, optional Whether to save the file, default=True - confidence_interval: float, optional - The confidence interval to be plotted, defaulting to 0.9 (90%) + confidence_interval: (float, list), optional + The confidence interval to be plotted, defaulting to 1-2-3 sigma lines: list If given, a list of matplotlib line formats to use, must be greater than the number of parameters. @@ -1549,6 +1566,8 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9, The font size for the legend keys: list A list of keys to use, if None defaults to search_parameter_keys + confidence_interval_alpha: float, list, optional + The transparency for the background condifence interval kwargs: Additional kwargs to pass to matplotlib.pyplot.plot @@ -1576,18 +1595,26 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9, x_values = np.linspace(0, 1, 1001) - # Putting in the confidence bands N = len(credible_levels) - edge_of_bound = (1. - confidence_interval) / 2. - lower = scipy.stats.binom.ppf(1 - edge_of_bound, N, x_values) / N - upper = scipy.stats.binom.ppf(edge_of_bound, N, x_values) / N - # The binomial point percent function doesn't always return 0 @ 0, - # so set those bounds explicitly to be sure - lower[0] = 0 - upper[0] = 0 fig, ax = plt.subplots() - ax.fill_between(x_values, lower, upper, alpha=0.2, color='k') + if isinstance(confidence_interval, float): + confidence_interval = [confidence_interval] + if isinstance(confidence_interval_alpha, float): + confidence_interval_alpha = [confidence_interval_alpha] * len(confidence_interval) + elif len(confidence_interval_alpha) != len(confidence_interval): + raise ValueError( + "confidence_interval_alpha must have the same length as confidence_interval") + + for ci, alpha in zip(confidence_interval, confidence_interval_alpha): + edge_of_bound = (1. - ci) / 2. + lower = scipy.stats.binom.ppf(1 - edge_of_bound, N, x_values) / N + upper = scipy.stats.binom.ppf(edge_of_bound, N, x_values) / N + # The binomial point percent function doesn't always return 0 @ 0, + # so set those bounds explicitly to be sure + lower[0] = 0 + upper[0] = 0 + ax.fill_between(x_values, lower, upper, alpha=alpha, color='k') pvalues = [] logger.info("Key: KS-test p-value") @@ -1617,7 +1644,7 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=0.9, len(results), pvals.combined_pvalue)) ax.set_xlabel("C.I.") ax.set_ylabel("Fraction of events in C.I.") - ax.legend(linewidth=1, labelspacing=0.25, fontsize=legend_fontsize) + ax.legend(linewidth=1, handlelength=2, labelspacing=0.25, fontsize=legend_fontsize) ax.set_xlim(0, 1) ax.set_ylim(0, 1) fig.tight_layout() diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py index 9d72464c2584dbd280249ab27c56b802301d76c6..197a6de7653c15f35751295082a1e7ed7826c232 100644 --- a/bilby/core/sampler/base_sampler.py +++ b/bilby/core/sampler/base_sampler.py @@ -439,7 +439,10 @@ class Sampler(object): return np.array(unit_cube), np.array(parameters), np.array(likelihood) def check_draw(self, theta, warning=True): - """ Checks if the draw will generate an infinite prior or likelihood + """ + Checks if the draw will generate an infinite prior or likelihood + + Also catches the output of `numpy.nan_to_num`. Parameters ---------- @@ -452,11 +455,12 @@ class Sampler(object): True if the likelihood and prior are finite, false otherwise """ - if np.isinf(self.log_prior(theta)): + bad_values = [np.inf, np.nan_to_num(np.inf), np.nan] + if abs(self.log_prior(theta)) in bad_values: if warning: logger.warning('Prior draw {} has inf prior'.format(theta)) return False - if np.isinf(self.log_likelihood(theta)): + if abs(self.log_likelihood(theta)) in bad_values: if warning: logger.warning('Prior draw {} has inf likelihood'.format(theta)) return False diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py index 1ed64e89c23b1588c88083043e3b74d64989ad0f..4c46e02f29b35a0a1dc5615c52b38ad67cab072e 100644 --- a/bilby/core/sampler/cpnest.py +++ b/bilby/core/sampler/cpnest.py @@ -38,7 +38,7 @@ class Cpnest(NestedSampler): {self.outdir}/cpnest_{self.label}/ """ - default_kwargs = dict(verbose=1, nthreads=1, nlive=500, maxmcmc=1000, + default_kwargs = dict(verbose=3, nthreads=1, nlive=500, maxmcmc=1000, seed=None, poolsize=100, nhamiltonian=0, resume=True, output=None, proposals=None, n_periodic_checkpoint=8000) diff --git a/bilby/core/sampler/dynamic_dynesty.py b/bilby/core/sampler/dynamic_dynesty.py index 0f2a8013dae906749aabe7f426cc48d5eafb1203..4e7e1f56dfa5134b25ef9e50c9cb83f3dc2b8e36 100644 --- a/bilby/core/sampler/dynamic_dynesty.py +++ b/bilby/core/sampler/dynamic_dynesty.py @@ -44,9 +44,6 @@ class DynamicDynesty(Dynesty): Other Parameters ---------------- - npoints: int, (250) - The number of live points, note this can also equivalently be given as - one of [nlive, nlives, n_live_points] bound: {'none', 'single', 'multi', 'balls', 'cubes'}, ('multi') Method used to select new points sample: {'unif', 'rwalk', 'slice', 'rslice', 'hslice'}, ('rwalk') diff --git a/bilby/core/sampler/dynesty.py b/bilby/core/sampler/dynesty.py index 7d6e511cdb62958e94192d04e22c7dc66f4c5eaf..d11334ee6d8174d31c4646bd5ec18cec8d1a3d99 100644 --- a/bilby/core/sampler/dynesty.py +++ b/bilby/core/sampler/dynesty.py @@ -329,7 +329,6 @@ class Dynesty(NestedSampler): sampler_kwargs['add_live'] = True self.start_time = datetime.datetime.now() while True: - sampler_kwargs['maxcall'] += self.n_check_point self._run_nested_wrapper(sampler_kwargs) if self.sampler.ncall == old_ncall: break diff --git a/bilby/gw/conversion.py b/bilby/gw/conversion.py index 31eef6eea8e0217c34487d4919fd3a44245163a0..469eef80e594f6a06013be2945d1262366855fcd 100644 --- a/bilby/gw/conversion.py +++ b/bilby/gw/conversion.py @@ -56,7 +56,7 @@ def luminosity_distance_to_comoving_distance(distance, cosmology=None): def bilby_to_lalsimulation_spins( theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1, mass_2, reference_frequency, phase): - if tilt_1 in [0, np.pi] and tilt_2 in [0, np.pi]: + if (a_1 == 0 or tilt_1 in [0, np.pi]) and (a_2 == 0 or tilt_2 in [0, np.pi]): spin_1x = 0 spin_1y = 0 spin_1z = a_1 * np.cos(tilt_1) diff --git a/bilby/gw/likelihood.py b/bilby/gw/likelihood.py index 45078af08199b935ec0f230bc13c650c451482d8..78626248189be863e5bd45f8bd0ad08f7225b1d4 100644 --- a/bilby/gw/likelihood.py +++ b/bilby/gw/likelihood.py @@ -22,7 +22,7 @@ from ..core.utils import ( speed_of_light, radius_of_earth) from ..core.prior import Interped, Prior, Uniform from .detector import InterferometerList -from .prior import BBHPriorDict, CBCPriorDict +from .prior import BBHPriorDict, CBCPriorDict, Cosmological from .source import lal_binary_black_hole from .utils import noise_weighted_inner_product, build_roq_weights, blockwise_dot_product from .waveform_generator import WaveformGenerator @@ -143,6 +143,9 @@ class GravitationalWaveTransient(Likelihood): for distance in self._distance_array]) self._setup_distance_marginalization( distance_marginalization_lookup_table) + for key in ['redshift', 'comoving_distance']: + if key in priors: + del priors[key] priors['luminosity_distance'] = float(self._ref_dist) self._marginalized_parameters.append('luminosity_distance') @@ -214,6 +217,18 @@ class GravitationalWaveTransient(Likelihood): self.priors[key] = Uniform( self.interferometers.start_time, self.interferometers.start_time + self.interferometers.duration) + elif key == 'luminosity_distance': + for key in ['redshift', 'comoving_distance']: + if key in self.priors: + if not isinstance(self.priors[key], Cosmological): + raise TypeError( + "To marginalize over {}, the prior must be specified as a " + "subclass of bilby.gw.prior.Cosmological.".format(key) + ) + self.priors['luminosity_distance'] = self.priors[key].get_corresponding_prior( + 'luminosity_distance' + ) + del self.priors[key] else: self.priors[key] = BBHPriorDict()[key] diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py index 5a07c8e944970071b4b08667e5717d34f9c2a137..c8472ebf90334d62128cb758aa0c92a571e729ba 100644 --- a/bilby/gw/prior.py +++ b/bilby/gw/prior.py @@ -136,31 +136,7 @@ class Cosmological(Interped): @minimum.setter def minimum(self, minimum): - cosmology = get_cosmology(self.cosmology) - self._minimum[self.name] = minimum - if self.name == 'redshift': - self._minimum['luminosity_distance'] =\ - cosmology.luminosity_distance(minimum).value - self._minimum['comoving_distance'] =\ - cosmology.comoving_distance(minimum).value - elif self.name == 'luminosity_distance': - if minimum == 0: - self._minimum['redshift'] = 0 - else: - self._minimum['redshift'] = cosmo.z_at_value( - cosmology.luminosity_distance, minimum * self.unit) - self._minimum['comoving_distance'] = self._minimum['redshift'] - elif self.name == 'comoving_distance': - if minimum == 0: - self._minimum['redshift'] = 0 - else: - self._minimum['redshift'] = cosmo.z_at_value( - cosmology.comoving_distance, minimum * self.unit) - self._minimum['luminosity_distance'] = self._minimum['redshift'] - try: - self._update_instance() - except (AttributeError, KeyError): - pass + self._set_limit(value=minimum, limit_dict=self._minimum) @property def maximum(self): @@ -168,21 +144,44 @@ class Cosmological(Interped): @maximum.setter def maximum(self, maximum): + self._set_limit(value=maximum, limit_dict=self._maximum) + + def _set_limit(self, value, limit_dict): + """ + Set either the limits for redshift luminosity and comoving distances + + Parameters + ---------- + value: float + Limit value in current class' parameter + limit_dict: dict + The limit dictionary to modify in place + """ cosmology = get_cosmology(self.cosmology) - self._maximum[self.name] = maximum + limit_dict[self.name] = value if self.name == 'redshift': - self._maximum['luminosity_distance'] = \ - cosmology.luminosity_distance(maximum).value - self._maximum['comoving_distance'] = \ - cosmology.comoving_distance(maximum).value + limit_dict['luminosity_distance'] = \ + cosmology.luminosity_distance(value).value + limit_dict['comoving_distance'] = \ + cosmology.comoving_distance(value).value elif self.name == 'luminosity_distance': - self._maximum['redshift'] = cosmo.z_at_value( - cosmology.luminosity_distance, maximum * self.unit) - self._maximum['comoving_distance'] = self._maximum['redshift'] + if value == 0: + limit_dict['redshift'] = 0 + else: + limit_dict['redshift'] = cosmo.z_at_value( + cosmology.luminosity_distance, value * self.unit) + limit_dict['comoving_distance'] = ( + cosmology.comoving_distance(limit_dict['redshift']).value + ) elif self.name == 'comoving_distance': - self._maximum['redshift'] = cosmo.z_at_value( - cosmology.comoving_distance, maximum * self.unit) - self._maximum['luminosity_distance'] = self._maximum['redshift'] + if value == 0: + limit_dict['redshift'] = 0 + else: + limit_dict['redshift'] = cosmo.z_at_value( + cosmology.comoving_distance, value * self.unit) + limit_dict['luminosity_distance'] = ( + cosmology.luminosity_distance(limit_dict['redshift']).value + ) try: self._update_instance() except (AttributeError, KeyError): @@ -767,22 +766,30 @@ ConditionalUniformSourceFrame = conditional_prior_factory(UniformSourceFrame) class HealPixMapPriorDist(BaseJointPriorDist): - def __init__(self, hp_file, names=None, bounds=None, distance=False): - """ - Class defining prior according to given HealPix Map, defaults to 2D in ra and dec but can be set to include - Distance as well. This only works with skymaps that include the 2D joint probability in ra/dec and that use the - normal LALInference type skymaps where each pixel has a DISTMU, DISTSIGMA, and DISTNORM defining the conditional - distance distribution along a given line of sight. - - hp_file: file path to .fits file - .fits file that containes the 2D or 3D Healpix Map - names: list (optional) - list of names of parameters included in the JointPriorDist, defaults to ['ra', 'dec'] - bounds: dict or list (optional) - dictionary or list with given prior bounds. defaults to normal bounds on ra, dev and 0, inf for distance - if this is for a 3D map - """ + """ + Class defining prior according to given HealPix Map, defaults to 2D in ra and dec but can be set to include + Distance as well. This only works with skymaps that include the 2D joint probability in ra/dec and that use the + normal LALInference type skymaps where each pixel has a DISTMU, DISTSIGMA, and DISTNORM defining the conditional + distance distribution along a given line of sight. + + Parameters + ---------- + + hp_file : file path to .fits file + .fits file that containes the 2D or 3D Healpix Map + names : list (optional) + list of names of parameters included in the JointPriorDist, defaults to ['ra', 'dec'] + bounds : dict or list (optional) + dictionary or list with given prior bounds. defaults to normal bounds on ra, dev and 0, inf for distance + if this is for a 3D map + + Returns + ------- + PriorDist : `bilby.gw.prior.HealPixMapPriorDist` + A JointPriorDist object to store the joint prior distribution according to passed healpix map + """ + def __init__(self, hp_file, names=None, bounds=None, distance=False): self.hp = self._check_imports() self.hp_file = hp_file if names is None: @@ -854,14 +861,14 @@ class HealPixMapPriorDist(BaseJointPriorDist): Parameters ---------- - samp: float, int + samp : float, int must take in single value for pixel on unitcube to recale onto ra, dec (distance), for the map Prior - kwargs: dict + kwargs : dict kwargs are all passed to _rescale() method Returns - ---------- - array_like + ------- + rescaled_sample : array_like sample to rescale onto the prior """ if self.distance: @@ -889,12 +896,15 @@ class HealPixMapPriorDist(BaseJointPriorDist): JointPrior Parameters. This function updates the current distance pdf, inverse_cdf, and sampler according to given pixel or line of sight. + Parameters ---------- - pix_idx: int + pix_idx : int pixel index value to create the distribtuion for + Returns - ---------- - None - just updates these functions at new pixel values + ------- + None : None + just updates these functions at new pixel values """ self.distance_pdf = lambda r: self.distnorm[pix_idx] * norm( loc=self.distmu[pix_idx], scale=self.distsigma[pix_idx] @@ -918,12 +928,12 @@ class HealPixMapPriorDist(BaseJointPriorDist): Parameters ---------- - array: array_like + array : array_like input array we want to renormalize if not already normalized Returns - --------- - array_like: + ------- + normed_array : array_like returns input array normalized """ norm = np.linalg.norm(array, ord=1) @@ -940,14 +950,14 @@ class HealPixMapPriorDist(BaseJointPriorDist): Parameters ---------- - size: int + size : int number of samples we want to draw - kwargs: dict + kwargs : dict kwargs are all passed to be used Returns - ---------- - array_like + ------- + sample : array_like sample of ra, and dec (and distance if 3D=True) """ pixel_choices = np.arange(self.npix) @@ -971,9 +981,16 @@ class HealPixMapPriorDist(BaseJointPriorDist): Method to recursively draw a distance value from the given set distance distribution and check that it is in the bounds - Returns + Parameters ---------- - dist: sample drawn from the distance distribution at set pixel index + + pix : int + integer for pixel to draw a distance from + + Returns + ------- + dist : float + sample drawn from the distance distribution at set pixel index """ if self.distmu[pix] == np.inf or self.distmu[pix] <= 0: return 0 @@ -990,16 +1007,16 @@ class HealPixMapPriorDist(BaseJointPriorDist): Parameters ---------- - ra: float, int + ra : float, int value drawn for rightascension - dec: float, int + dec : float, int value drawn for declination - pix: int + pix : int pixel index for given pixel we want to get ra, and dec from Returns - --------- - tuple: + ------- + ra_dec : tuple this returns a tuple of ra, and dec sampled uniformly that are in the pixel given """ if not self.check_in_pixel(ra, dec, pix): @@ -1017,16 +1034,16 @@ class HealPixMapPriorDist(BaseJointPriorDist): Parameters ---------- - ra: float, int + ra : float, int rightascension value to check - dec: float, int + dec : float, int declination value to check - pix: int + pix : int index for pixel we want to check in Returns - -------- - bool: + ------- + bool : returns True if values inside pixel, False if not """ for val, name in zip([ra, dec], self.names): @@ -1042,16 +1059,16 @@ class HealPixMapPriorDist(BaseJointPriorDist): Parameters ---------- - samp: array_like + samp : array_like samples of ra, dec to evaluate the lnprob at - lnprob: array_like + lnprob : array_like array of correct length we want to populate with lnprob values - outbounds: boolean array + outbounds : boolean array boolean array that flags samples that are out of the given bounds Returns - ---------- - array_like + ------- + lnprob : array_like lnprob values at each sample """ for i in range(samp.shape[0]): diff --git a/bilby/gw/source.py b/bilby/gw/source.py index 6fc9d354f4741abe875a6a94f12c56d08c901482..c6f7101801bbe671bc0785da8d217a94262503ee 100644 --- a/bilby/gw/source.py +++ b/bilby/gw/source.py @@ -396,6 +396,13 @@ def _base_lal_cbc_fd_waveform( h_plus *= frequency_bounds h_cross *= frequency_bounds + if wf_func == lalsim_SimInspiralFD: + dt = 1. / delta_frequency + (hplus.epoch.gpsSeconds + hplus.epoch.gpsNanoSeconds * 1e-9) + h_plus *= np.exp( + -1j * 2 * np.pi * dt * frequency_array) + h_cross *= np.exp( + -1j * 2 * np.pi * dt * frequency_array) + return dict(plus=h_plus, cross=h_cross) diff --git a/docs/gw_prior.txt b/docs/gw_prior.txt new file mode 100644 index 0000000000000000000000000000000000000000..1167ec7edf9aa407575b4a37e5e60796095e6874 --- /dev/null +++ b/docs/gw_prior.txt @@ -0,0 +1,32 @@ +.. gw_prior: + +=================================== +Transient Graviatiaonal wave priors +=================================== + +A Cosmological GW prior, :code:`Cosmological`: + +.. autoclass:: bilby.gw.prior.Cosmological + :members: + +Uniform in Comoving Volume GW Prior (inherited from Cosmological) :code:`UniformComovingVolume`: + +.. autoclass:: bilby.gw.prior.UniformComovingVolume + :members: + +Uniform in Source Frame GW Prior :code:`UniformSourceFrame`: + +.. autoclass:: bilby.gw.prior.UniformSourceFrame + :members: + +Aligned Spine GW Prior :code:`AlignedSpin`: + +.. autoclass:: bilby.gw.prior.AlignedSpin + :members: + +HealPixMap JointPriorDist (See JointPriors in bilby.core.prior.joint) :code:`HealPixMapPriorDist`: + +.. autoclass:: bilby.gw.prior.HealPixMapPriorDist + :members: + + diff --git a/docs/index.txt b/docs/index.txt index eb0cb84acb78e42e0d323f60d552fecd8c9dd440..45c4b119810b707ae6e36bea30752ea2815d231f 100644 --- a/docs/index.txt +++ b/docs/index.txt @@ -20,6 +20,7 @@ Welcome to bilby's documentation! compact-binary-coalescence-parameter-estimation transient-gw-data gw_likelihood + gw_prior conversion gw_references writing-documentation diff --git a/examples/core_examples/logo/sample_logo.py b/examples/core_examples/logo/sample_logo.py index 9340e34f5b4d1ede09d562650fa752ccf974b4f2..20b591a39c0e091c9e1ac660f89b572939c37650 100644 --- a/examples/core_examples/logo/sample_logo.py +++ b/examples/core_examples/logo/sample_logo.py @@ -8,14 +8,14 @@ from skimage import io class Likelihood(bilby.Likelihood): def __init__(self, interp): self.interp = interp - self.parameters = dict(x=None, y=None) + super().__init__(parameters=dict(x=None, y=None)) def log_likelihood(self): return -1 / (self.interp(self.parameters['x'], self.parameters['y'])[0]) for letter in ['B', 'I', 'L', 'Y']: - img = 1 - io.imread('{}.png'.format(letter), as_grey=True)[::-1, :] + img = 1 - io.imread('{}.png'.format(letter), as_gray=True)[::-1, :] x = np.arange(img.shape[0]) y = np.arange(img.shape[1]) interp = si.interpolate.interp2d(x, y, img.T) diff --git a/setup.cfg b/setup.cfg index a7a69fe9f033787df2a7eab72d3f56e6f3f6db48..fad8e426f7aece3c1095427bd83748ca9d1255a1 100644 --- a/setup.cfg +++ b/setup.cfg @@ -9,6 +9,7 @@ addopts = --ignore test/gw_example_test.py --ignore test/example_test.py --ignore test/sample_from_the_prior_test.py + --ignore test/sampler_test.py [metadata] license_file = LICENSE.md diff --git a/setup.py b/setup.py index 1f7aaa45edf181789169728c1725efcc27427732..1c07598b11fbdd7b9fafccf0f0c53ffba74b94db 100644 --- a/setup.py +++ b/setup.py @@ -64,7 +64,7 @@ def readfile(filename): return filecontents -VERSION = '0.6.4' +VERSION = '0.6.5' version_file = write_version_file(VERSION) long_description = get_long_description() diff --git a/test/prior_test.py b/test/prior_test.py index d579e31a64ec1319c4856ee76795aa7c47c24922..832956928bc2c44217395afd287cc564868d4325 100644 --- a/test/prior_test.py +++ b/test/prior_test.py @@ -929,7 +929,7 @@ class TestFillPrior(unittest.TestCase): self.likelihood = Mock() self.likelihood.parameters = dict(a=0, b=0, c=0, d=0, asdf=0, ra=1) self.likelihood.non_standard_sampling_parameter_keys = dict(t=8) - self.priors = dict(a=1, b=1.1, c='string', d=bilby.core.prior.Uniform(0, 1)) + self.priors = dict(a=1, b=1.1, c="string", d=bilby.core.prior.Uniform(0, 1)) self.priors = bilby.core.prior.PriorDict(dictionary=self.priors) self.default_prior_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'prior_files/binary_black_holes.prior') diff --git a/test/sampler_test.py b/test/sampler_test.py index 7a80eac6fd8d838604b59aca2d873e7328db5120..1bc4b59168c0bb82888d34b70b6efa070eb46375 100644 --- a/test/sampler_test.py +++ b/test/sampler_test.py @@ -112,14 +112,14 @@ class TestCPNest(unittest.TestCase): del self.sampler def test_default_kwargs(self): - expected = dict(verbose=1, nthreads=1, nlive=500, maxmcmc=1000, + expected = dict(verbose=3, nthreads=1, nlive=500, maxmcmc=1000, seed=None, poolsize=100, nhamiltonian=0, resume=True, output='outdir/cpnest_label/', proposals=None, n_periodic_checkpoint=8000) self.assertDictEqual(expected, self.sampler.kwargs) def test_translate_kwargs(self): - expected = dict(verbose=1, nthreads=1, nlive=250, maxmcmc=1000, + expected = dict(verbose=3, nthreads=1, nlive=250, maxmcmc=1000, seed=None, poolsize=100, nhamiltonian=0, resume=True, output='outdir/cpnest_label/', proposals=None, n_periodic_checkpoint=8000) @@ -552,7 +552,8 @@ class TestRunningSamplers(unittest.TestCase): def test_run_dynamic_dynesty(self): _ = bilby.run_sampler( likelihood=self.likelihood, priors=self.priors, sampler='dynamic_dynesty', - nlive=100, save=False) + nlive_init=100, nlive_batch=100, dlogz_init=1.0, maxbatch=0, + maxcall=100, bound="single", save=False) def test_run_emcee(self): _ = bilby.run_sampler(