diff --git a/examples/other_examples/linear_regression_pymc3.py b/examples/other_examples/linear_regression_pymc3.py
new file mode 100644
index 0000000000000000000000000000000000000000..ccd4f48eb40d2416e273dd7f75536abbeb49495d
--- /dev/null
+++ b/examples/other_examples/linear_regression_pymc3.py
@@ -0,0 +1,63 @@
+#!/bin/python
+"""
+An example of how to use tupak to perform paramater estimation for
+non-gravitational wave data. In this case, fitting a linear function to
+data with background Gaussian noise
+
+"""
+from __future__ import division
+import tupak
+import numpy as np
+import matplotlib.pyplot as plt
+import inspect
+
+from tupak.core.likelihood import GaussianLikelihood
+
+# A few simple setup steps
+label = 'linear_regression_pymc3'
+outdir = 'outdir'
+tupak.utils.check_directory_exists_and_if_not_mkdir(outdir)
+
+# First, we define our "signal model", in this case a simple linear function
+def model(time, m, c):
+    return time * m + c
+
+# Now we define the injection parameters which we make simulated data with
+injection_parameters = dict(m=0.5, c=0.2)
+
+# For this example, we'll use standard Gaussian noise
+sigma = 1
+
+# These lines of code generate the fake data. Note the ** just unpacks the
+# contents of the injection_paramsters when calling the model function.
+sampling_frequency = 10
+time_duration = 10
+time = np.arange(0, time_duration, 1/sampling_frequency)
+N = len(time)
+data = model(time, **injection_parameters) + np.random.normal(0, sigma, N)
+
+# We quickly plot the data to check it looks sensible
+fig, ax = plt.subplots()
+ax.plot(time, data, 'o', label='data')
+ax.plot(time, model(time, **injection_parameters), '--r', label='signal')
+ax.set_xlabel('time')
+ax.set_ylabel('y')
+ax.legend()
+fig.savefig('{}/{}_data.png'.format(outdir, label))
+
+# Now lets instantiate a version of our GaussianLikelihood, giving it
+# the time, data and signal model
+likelihood = GaussianLikelihood(time, data, model, sigma=sigma)
+
+# From hereon, the syntax is exactly equivalent to other tupak examples
+# We make a prior
+priors = {}
+priors['m'] = tupak.core.prior.Uniform(0, 5, 'm')
+priors['c'] = tupak.core.prior.Uniform(-2, 2, 'c')
+
+# And run sampler
+result = tupak.run_sampler(
+    likelihood=likelihood, priors=priors, sampler='pymc3',
+    injection_parameters=injection_parameters, outdir=outdir,
+    draws=2000, label=label)
+result.plot_corner()
diff --git a/examples/other_examples/linear_regression_pymc3_custom_likelihood.py b/examples/other_examples/linear_regression_pymc3_custom_likelihood.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b3ab8af138ead0dc1428e1737eb46ed1ea255ca
--- /dev/null
+++ b/examples/other_examples/linear_regression_pymc3_custom_likelihood.py
@@ -0,0 +1,149 @@
+#!/bin/python
+"""
+An example of how to use tupak to perform paramater estimation for
+non-gravitational wave data. In this case, fitting a linear function to
+data with background Gaussian noise. This example uses a custom
+likelihood function to show how it should be defined, although this
+would give equivalent results as using the pre-defined 'Gaussian Likelihood'
+
+"""
+
+from __future__ import division
+import tupak
+import numpy as np
+import matplotlib.pyplot as plt
+import inspect
+import pymc3 as pm
+
+# A few simple setup steps
+label = 'linear_regression_pymc3_custom_likelihood'
+outdir = 'outdir'
+tupak.utils.check_directory_exists_and_if_not_mkdir(outdir)
+
+# First, we define our "signal model", in this case a simple linear function
+def model(time, m, c):
+    return time * m + c
+
+# Now we define the injection parameters which we make simulated data with
+injection_parameters = dict(m=0.5, c=0.2)
+
+# For this example, we'll use standard Gaussian noise
+sigma = 1
+
+# These lines of code generate the fake data. Note the ** just unpacks the
+# contents of the injection_paramsters when calling the model function.
+sampling_frequency = 10
+time_duration = 10
+time = np.arange(0, time_duration, 1/sampling_frequency)
+N = len(time)
+data = model(time, **injection_parameters) + np.random.normal(0, sigma, N)
+
+# We quickly plot the data to check it looks sensible
+fig, ax = plt.subplots()
+ax.plot(time, data, 'o', label='data')
+ax.plot(time, model(time, **injection_parameters), '--r', label='signal')
+ax.set_xlabel('time')
+ax.set_ylabel('y')
+ax.legend()
+fig.savefig('{}/{}_data.png'.format(outdir, label))
+
+
+# Parameter estimation: we now define a Gaussian Likelihood class relevant for
+# our model.
+class GaussianLikelihoodPyMC3(tupak.Likelihood):
+    def __init__(self, x, y, sigma, function):
+        """
+        A general Gaussian likelihood - the parameters are inferred from the
+        arguments of function
+
+        Parameters
+        ----------
+        x, y: array_like
+            The data to analyse
+        sigma: float
+            The standard deviation of the noise
+        function:
+            The python function to fit to the data. Note, this must take the
+            dependent variable as its first argument. The other arguments are
+            will require a prior and will be sampled over (unless a fixed
+            value is given).
+        """
+        self.x = x
+        self.y = y
+        self.sigma = sigma
+        self.N = len(x)
+        self.function = function
+
+        # These lines of code infer the parameters from the provided function
+        parameters = inspect.getargspec(function).args
+        parameters.pop(0)
+        self.parameters = dict.fromkeys(parameters)
+
+    def log_likelihood(self, sampler=None):
+        """
+        Parameters
+        ----------
+        sampler: :class:`tupak.core.sampler.Pymc3`
+            A Sampler object must be passed containing the prior distributions
+            and PyMC3 :class:`~pymc3.Model` to use as a context manager.
+        """
+
+        from tupak.core.sampler import Pymc3
+
+        if not isinstance(sampler, Pymc3):
+            raise ValueError("Sampler is not a tupak Pymc3 sampler object")
+
+        if not hasattr(sampler, 'pymc3_model'):
+            raise AttributeError("Sampler has not PyMC3 model attribute")
+
+        with sampler.pymc3_model:
+            mdist = sampler.pymc3_priors['m']
+            cdist = sampler.pymc3_priors['c']
+            
+            mu = model(time, mdist, cdist)
+
+            # set the likelihood distribution
+            pm.Normal('likelihood', mu=mu, sd=self.sigma, observed=self.y)
+
+# Now lets instantiate a version of our GaussianLikelihood, giving it
+# the time, data and signal model
+likelihood = GaussianLikelihoodPyMC3(time, data, sigma, model)
+
+
+# Define a custom prior for one of the parameter for use with PyMC3
+class PriorPyMC3(tupak.core.prior.Prior):
+    def __init__(self, minimum, maximum, name=None, latex_label=None):
+        """
+        Uniform prior with bounds (should be equivalent to tupak.prior.Uniform)
+        """
+
+        tupak.core.prior.Prior.__init__(self, name, latex_label,
+                                        minimum=minimum,
+                                        maximum=maximum)
+
+    def ln_prob(self, sampler=None):
+        """
+        Change ln_prob method to take in a Sampler and return a PyMC3
+        distribution.
+        """
+
+        from tupak.core.sampler import Pymc3
+
+        if not isinstance(sampler, Pymc3):
+            raise ValueError("Sampler is not a tupak Pymc3 sampler object")
+
+        return pm.Uniform(self.name, lower=self.minimum,
+                          upper=self.maximum)
+
+# From hereon, the syntax is exactly equivalent to other tupak examples
+# We make a prior
+priors = {}
+priors['m'] = tupak.core.prior.Uniform(0, 5, 'm')
+priors['c'] = PriorPyMC3(-2, 2, 'c')
+
+# And run sampler
+result = tupak.run_sampler(
+    likelihood=likelihood, priors=priors, sampler='pymc3', draws=1000,
+    tune=1000, discard_tuned_samples=True, injection_parameters=injection_parameters, 
+    outdir=outdir, label=label)
+result.plot_corner()
diff --git a/examples/other_examples/radioactive_decay.py b/examples/other_examples/radioactive_decay.py
index 156406da22ca603927d662dacc3b1317c0f12bbd..bcc8fbc7c9ed77b95e9c5e24eda0026a5d6c4f76 100644
--- a/examples/other_examples/radioactive_decay.py
+++ b/examples/other_examples/radioactive_decay.py
@@ -20,6 +20,8 @@ tupak.utils.check_directory_exists_and_if_not_mkdir(outdir)
 # generate a set of counts per minute for Polonium 214 with a half-life of 20 mins
 halflife = 20
 N0 = 1.e-19 # initial number of radionucleotides in moles
+atto = 1e-18
+N0 /= atto
 
 def decayrate(deltat, halflife, N0):
     """
@@ -33,7 +35,9 @@ def decayrate(deltat, halflife, N0):
     ln2 = np.log(2.)
     NA = 6.02214078e23 # Avagadro's number
 
-    rates = (N0*NA*(np.exp(-ln2*(times[0:-1]/halflife)) 
+    N0a = N0*atto*NA # number of nucleotides
+
+    rates = (N0a*(np.exp(-ln2*(times[0:-1]/halflife)) 
              - np.exp(-ln2*(times[1:]/halflife)))/deltat)
 
     return rates
@@ -70,8 +74,8 @@ likelihood = PoissonLikelihood(deltat, counts, decayrate)
 priors = {}
 priors['halflife'] = tupak.core.prior.LogUniform(1e-5, 1e5, 'halflife',
                                                  latex_label='$t_{1/2}$ (min)')
-priors['N0'] = tupak.core.prior.LogUniform(1e-25, 1e-10, 'N0',
-                                           latex_label='$N_0$ (mole)')
+priors['N0'] = tupak.core.prior.LogUniform(1e-25/atto, 1e-10/atto, 'N0',
+                                           latex_label='$N_0$ (attomole)')
 
 # And run sampler
 result = tupak.run_sampler(
diff --git a/optional_requirements.txt b/optional_requirements.txt
index 9519ca78e7c2e4c511949f0556308ca6f36f20d5..bb4d2aadd2451de8043928164baa0c8e428fdf45 100644
--- a/optional_requirements.txt
+++ b/optional_requirements.txt
@@ -1,3 +1,4 @@
 astropy
 lalsuite
 gwpy
+theano
\ No newline at end of file
diff --git a/tupak/core/prior.py b/tupak/core/prior.py
index eee8f98a8b763968164b6cee8ade061ef93d62cb..151883c6b66f850a818b60709e09fe9fe361df64 100644
--- a/tupak/core/prior.py
+++ b/tupak/core/prior.py
@@ -1056,7 +1056,6 @@ class Exponential(Prior):
         """
         Prior.__init__(self, name=name, minimum=0., latex_label=latex_label)
         self.mu = mu
-        self.logmu = np.log(mu)
 
     def rescale(self, val):
         """
diff --git a/tupak/core/sampler.py b/tupak/core/sampler.py
index aadbe4a0ebaf70f8ffc49ed033ed6238a2b7cfd0..fe558a4de1871b9ed93f8c026a9dd38fddeed406 100644
--- a/tupak/core/sampler.py
+++ b/tupak/core/sampler.py
@@ -941,6 +941,531 @@ class Ptemcee(Emcee):
         return self.result
 
 
+class Pymc3(Sampler):
+    """ https://docs.pymc.io/ """
+
+    def _verify_parameters(self):
+        """
+        Change `_verify_parameters()` to just pass, i.e., don't try and
+        evaluate the likelihood for PyMC3.
+        """
+        pass
+
+    def _verify_use_ratio(self):
+        """
+        Change `_verify_use_ratio() to just pass.
+        """
+        pass
+
+    def _initialise_parameters(self):
+        """
+        Change `_initialise_parameters()`, so that it does call the `sample`
+        method in the Prior class.
+
+        """
+
+        self.__search_parameter_keys = []
+        self.__fixed_parameter_keys = []
+
+        for key in self.priors:
+            if isinstance(self.priors[key], Prior) \
+                    and self.priors[key].is_fixed is False:
+                self.__search_parameter_keys.append(key)
+            elif isinstance(self.priors[key], Prior) \
+                    and self.priors[key].is_fixed is True:
+                self.__fixed_parameter_keys.append(key)
+
+        logger.info("Search parameters:")
+        for key in self.__search_parameter_keys:
+            logger.info('  {} = {}'.format(key, self.priors[key]))
+        for key in self.__fixed_parameter_keys:
+            logger.info('  {} = {}'.format(key, self.priors[key].peak))
+
+    def _initialise_result(self):
+        """
+        Initialise results within Pymc3 subclass.
+        """
+        result = Result()
+        result.sampler = self.__class__.__name__.lower()
+        result.search_parameter_keys = self.__search_parameter_keys
+        result.fixed_parameter_keys = self.__fixed_parameter_keys
+        result.parameter_labels = [
+            self.priors[k].latex_label for k in
+            self.__search_parameter_keys]
+        result.label = self.label
+        result.outdir = self.outdir
+        result.kwargs = self.kwargs
+        return result
+
+    @property
+    def kwargs(self):
+        """ Ensures that proper keyword arguments are used for the Pymc3 sampler.
+
+        Returns
+        -------
+        dict: Keyword arguments used for the Nestle Sampler
+
+        """
+        return self.__kwargs
+
+    @kwargs.setter
+    def kwargs(self, kwargs):
+        self.__kwargs = dict()
+        self.__kwargs.update(kwargs)
+
+        # set some defaults
+
+        # set the number of draws
+        self.draws = 1000 if 'draws' not in self.__kwargs else self.__kwargs.pop('draws')
+
+        if 'chains' not in self.__kwargs:
+            self.__kwargs['chains'] = 2
+            self.chains = self.__kwargs['chains']
+
+        if 'cores' not in self.__kwargs:
+            self.__kwargs['cores'] = 1
+
+    def setup_prior_mapping(self):
+        """
+        Set the mapping between predefined tupak priors and the equivalent
+        PyMC3 distributions.
+        """
+
+        prior_map = {}
+        self.prior_map = prior_map
+        
+        # predefined PyMC3 distributions 
+        prior_map['Gaussian'] =          {'pymc3': 'Normal',
+                                          'argmap': {'mu': 'mu', 'sigma': 'sd'}}
+        prior_map['TruncatedGaussian'] = {'pymc3': 'TruncatedNormal',
+                                          'argmap': {'mu': 'mu', 'sigma': 'sd', 'minimum': 'lower', 'maximum': 'upper'}}
+        prior_map['HalfGaussian'] =      {'pymc3': 'HalfNormal',
+                                          'argmap': {'sigma': 'sd'}}
+        prior_map['Uniform'] =           {'pymc3': 'Uniform',
+                                          'argmap': {'minimum': 'lower', 'maximum': 'upper'}}
+        prior_map['LogNormal'] =         {'pymc3': 'Lognormal',
+                                          'argmap': {'mu': 'mu', 'sigma': 'sd'}}
+        prior_map['Exponential'] =       {'pymc3': 'Exponential',
+                                          'argmap': {'mu': 'lam'},
+                                          'argtransform': {'mu': lambda mu: 1./mu}}
+        prior_map['StudentT'] =          {'pymc3': 'StudentT',
+                                          'argmap': {'df': 'nu', 'mu': 'mu', 'scale': 'sd'}}
+        prior_map['Beta'] =              {'pymc3': 'Beta',
+                                          'argmap': {'alpha': 'alpha', 'beta': 'beta'}}
+        prior_map['Logistic'] =          {'pymc3': 'Logistic',
+                                          'argmap': {'mu': 'mu', 'scale': 's'}}
+        prior_map['Cauchy'] =            {'pymc3': 'Cauchy',
+                                          'argmap': {'alpha': 'alpha', 'beta': 'beta'}}
+        prior_map['Gamma'] =             {'pymc3': 'Gamma',
+                                          'argmap': {'k': 'alpha', 'theta': 'beta'},
+                                          'argtransform': {'theta': lambda theta: 1./theta}}
+        prior_map['ChiSquared'] =        {'pymc3': 'ChiSquared',
+                                          'argmap': {'nu': 'nu'}}
+        prior_map['Interped'] =          {'pymc3': 'Interpolated',
+                                          'argmap': {'xx': 'x_points', 'yy': 'pdf_points'}}
+        prior_map['Normal'] = prior_map['Gaussian']
+        prior_map['TruncatedNormal'] = prior_map['TruncatedGaussian']
+        prior_map['HalfNormal'] = prior_map['HalfGaussian']
+        prior_map['LogGaussian'] = prior_map['LogNormal']
+        prior_map['Lorentzian'] = prior_map['Cauchy']
+        prior_map['FromFile'] = prior_map['Interped']
+
+        # internally defined mappings for tupak priors
+        prior_map['DeltaFunction'] = {'internal': self._deltafunction_prior}
+        prior_map['Sine'] =          {'internal': self._sine_prior}
+        prior_map['Cosine'] =        {'internal': self._cosine_prior}
+        prior_map['PowerLaw'] =      {'internal': self._powerlaw_prior}
+        prior_map['LogUniform'] =    {'internal': self._powerlaw_prior}
+
+    def _deltafunction_prior(self, key, **kwargs):
+        """
+        Map the tupak delta function prior to a single value for PyMC3.
+        """
+
+        from tupak.core.prior import DeltaFunction
+
+        # check prior is a DeltaFunction
+        if isinstance(self.priors[key], DeltaFunction):
+            return self.priors[key].peak
+        else:
+            raise ValueError("Prior for '{}' is not a DeltaFunction".format(key))
+
+    def _sine_prior(self, key):
+        """
+        Map the tupak Sine prior to a PyMC3 style function
+        """
+ 
+        from tupak.core.prior import Sine
+
+        # check prior is a Sine
+        if isinstance(self.priors[key], Sine):
+            pymc3 = self.external_sampler
+
+            try:
+                import theano.tensor as tt
+                from pymc3.theanof import floatX
+            except ImportError:
+                raise ImportError("You must have Theano installed to use PyMC3")
+
+            class Pymc3Sine(pymc3.Continuous):
+                def __init__(self, lower=0., upper=np.pi):
+                    if lower >= upper:
+                        raise ValueError("Lower bound is above upper bound!")
+
+                    # set the mode
+                    self.lower = lower = tt.as_tensor_variable(floatX(lower))
+                    self.upper = upper = tt.as_tensor_variable(floatX(upper))
+                    self.norm = (tt.cos(lower) - tt.cos(upper))
+                    self.mean = (tt.sin(upper)+lower*tt.cos(lower) - tt.sin(lower) - upper*tt.cos(upper))/self.norm
+
+                    transform = pymc3.distributions.transforms.interval(lower, upper)
+
+                    super(Pymc3Sine, self).__init__(transform=transform)
+
+                def logp(self, value):
+                    upper = self.upper
+                    lower = self.lower
+                    return pymc3.distributions.dist_math.bound(tt.log(tt.sin(value)/self.norm), lower <= value, value <= upper)
+
+            return Pymc3Sine(key, lower=self.priors[key].minimum, upper=self.priors[key].maximum)
+        else:
+            raise ValueError("Prior for '{}' is not a Sine".format(key))
+
+    def _cosine_prior(self, key):
+        """
+        Map the tupak Cosine prior to a PyMC3 style function
+        """
+ 
+        from tupak.core.prior import Cosine
+
+        # check prior is a Cosine
+        if isinstance(self.priors[key], Cosine):
+            pymc3 = self.external_sampler
+
+            # import theano
+            try:
+                import theano.tensor as tt
+                from pymc3.theanof import floatX
+            except ImportError:
+                raise ImportError("You must have Theano installed to use PyMC3")
+
+            class Pymc3Cosine(pymc3.Continuous):
+                def __init__(self, lower=-np.pi/2., upper=np.pi/2.):
+                    if lower >= upper:
+                        raise ValueError("Lower bound is above upper bound!")
+
+                    self.lower = lower = tt.as_tensor_variable(floatX(lower))
+                    self.upper = upper = tt.as_tensor_variable(floatX(upper))
+                    self.norm = (tt.sin(upper) - tt.sin(lower))
+                    self.mean = (upper*tt.sin(upper) + tt.cos(upper)-lower*tt.sin(lower)-tt.cos(lower))/self.norm
+
+                    transform = pymc3.distributions.transforms.interval(lower, upper)
+
+                    super(Pymc3Cosine, self).__init__(transform=transform)
+
+                def logp(self, value):
+                    upper = self.upper
+                    lower = self.lower
+                    return pymc3.distributions.dist_math.bound(tt.log(tt.cos(value)/self.norm), lower <= value, value <= upper)
+
+            return Pymc3Cosine(key, lower=self.priors[key].minimum, upper=self.priors[key].maximum)
+        else:
+            raise ValueError("Prior for '{}' is not a Cosine".format(key))
+
+    def _powerlaw_prior(self, key):
+        """
+        Map the tupak PowerLaw prior to a PyMC3 style function
+        """
+ 
+        from tupak.core.prior import PowerLaw
+
+        # check prior is a PowerLaw
+        if isinstance(self.priors[key], PowerLaw):
+            pymc3 = self.external_sampler
+
+            # check power law is set
+            if not hasattr(self.priors[key], 'alpha'):
+                raise AttributeError("No 'alpha' attribute set for PowerLaw prior")
+
+            # import theano
+            try:
+                import theano.tensor as tt
+                from pymc3.theanof import floatX
+            except ImportError:
+                raise ImportError("You must have Theano installed to use PyMC3")
+
+            if self.priors[key].alpha < -1.:
+                # use Pareto distribution
+                palpha = -(1. + self.priors[key].alpha)
+
+                return pymc3.Bound(pymc3.Pareto, upper=self.priors[key].minimum)(key, alpha=palpha, m=self.priors[key].maximum)
+            else:
+                class Pymc3PowerLaw(pymc3.Continuous):
+                    def __init__(self, lower, upper, alpha, testval=1):
+                        falpha = alpha
+                        self.lower = lower = tt.as_tensor_variable(floatX(lower))
+                        self.upper = upper = tt.as_tensor_variable(floatX(upper))
+                        self.alpha = alpha = tt.as_tensor_variable(floatX(alpha))
+
+                        if falpha == -1:
+                            self.norm = 1./(tt.log(self.upper/self.lower))
+                        else:
+                            beta = (1. + self.alpha)
+                            self.norm = 1. /(beta * (tt.pow(self.upper, beta) 
+                                          - tt.pow(self.lower, beta)))
+
+                        transform = pymc3.distributions.transforms.interval(lower, upper)
+
+                        super(Pymc3PowerLaw, self).__init__(transform=transform, testval=testval)
+
+                    def logp(self, value):
+                        upper = self.upper
+                        lower = self.lower
+                        alpha = self.alpha
+
+                        return pymc3.distributions.dist_math.bound(self.alpha*tt.log(value) + tt.log(self.norm), lower <= value, value <= upper)
+
+                return Pymc3PowerLaw(key, lower=self.priors[key].minimum, upper=self.priors[key].maximum, alpha=self.priors[key].alpha)
+        else:
+            raise ValueError("Prior for '{}' is not a Power Law".format(key))
+
+    def _run_external_sampler(self):
+        pymc3 = self.external_sampler
+
+        # set the step method
+        from pymc3.sampling import STEP_METHODS
+
+        step_methods = {m.__name__.lower(): m.__name__ for m in STEP_METHODS}
+        if 'step' in self.__kwargs:
+            step_method = self.__kwargs.pop('step').lower()
+
+            if step_method not in step_methods:
+                raise ValueError("Using invalid step method '{}'".format(step_method))
+        else:
+            step_method = None
+
+        # initialise the PyMC3 model
+        self.pymc3_model = pymc3.Model()
+
+        # set the step method
+        sm = None if step_method is None else pymc3.__dict__[step_methods[step_method]]()
+
+        # set the prior
+        self.set_prior()
+
+        # if a custom log_likelihood function requires a `sampler` argument
+        # then use that log_likelihood function, with the assumption that it
+        # takes in a Pymc3 Sampler, with a pymc3_model attribute, and defines
+        # the likelihood within that context manager
+        likeargs = inspect.getargspec(self.likelihood.log_likelihood).args
+        if 'sampler' in likeargs:
+            self.likelihood.log_likelihood(sampler=self)
+        else:
+            # set the likelihood function from predefined functions
+            self.set_likelihood()
+
+        with self.pymc3_model:
+            # perform the sampling
+            trace = pymc3.sample(self.draws, step=sm, **self.kwargs)
+
+        nparams = len([key for key in self.priors.keys() if self.priors[key].__class__.__name__ != 'DeltaFunction'])
+        nsamples = len(trace)*self.chains
+
+        self.result.samples = np.zeros((nsamples, nparams))
+        count = 0
+        for key in self.priors.keys():
+            if self.priors[key].__class__.__name__ != 'DeltaFunction': # ignore DeltaFunction variables
+                self.result.samples[:,count] = trace[key]
+                count += 1
+
+        self.result.sampler_output = np.nan
+        self.calculate_autocorrelation(self.result.samples)
+        self.result.log_evidence = np.nan
+        self.result.log_evidence_err = np.nan
+        return self.result
+
+    def set_prior(self):
+        """
+        Set the PyMC3 prior distributions.
+        """
+
+        self.setup_prior_mapping()
+
+        self.pymc3_priors = dict()
+
+        pymc3 = self.external_sampler
+
+        # set the parameter prior distributions (in the model context manager)
+        with self.pymc3_model:
+            for key in self.priors:
+                # if the prior contains ln_prob method that takes a 'sampler' argument
+                # then try using that
+                lnprobargs = inspect.getargspec(self.priors[key].ln_prob).args
+                if 'sampler' in lnprobargs:
+                    try:
+                        self.pymc3_priors[key] = self.priors[key].ln_prob(sampler=self)
+                    except RuntimeError:
+                        raise RuntimeError(("Problem setting PyMC3 prior for ",
+                            "'{}'".format(key)))
+                else:
+                    # use Prior distribution name
+                    distname = self.priors[key].__class__.__name__
+
+                    if distname in self.prior_map:
+                        # check if we have a predefined PyMC3 distribution
+                        if 'pymc3' in self.prior_map[distname] and 'argmap' in self.prior_map[distname]:
+                            # check the required arguments for the PyMC3 distribution
+                            pymc3distname = self.prior_map[distname]['pymc3']
+
+                            if pymc3distname not in pymc3.__dict__:
+                                raise ValueError("Prior '{}' is not a known PyMC3 distribution.".format(pymc3distname))
+
+                            reqargs = inspect.getargspec(pymc3.__dict__[pymc3distname].__init__).args[1:]
+
+                            # set keyword arguments
+                            priorkwargs = {}
+                            for (targ, parg) in self.prior_map[distname]['argmap'].items():
+                                if hasattr(self.priors[key], targ):
+                                    if parg in reqargs:
+                                        if 'argtransform' in self.prior_map[distname]:
+                                            if targ in self.prior_map[distname]['argtransform']:
+                                                tfunc = self.prior_map[distname]['argtransform'][targ]
+                                            else:
+                                                tfunc = lambda x: x
+                                        else:
+                                            tfunc = lambda x: x
+
+                                        priorkwargs[parg] = tfunc(getattr(self.priors[key], targ))
+                                    else:
+                                        raise ValueError("Unknown argument {}".format(parg))
+                                else:
+                                    if parg in reqargs:
+                                        priorkwargs[parg] = None
+                            self.pymc3_priors[key] = pymc3.__dict__[pymc3distname](key, **priorkwargs)
+                        elif 'internal' in self.prior_map[distname]:
+                            self.pymc3_priors[key] = self.prior_map[distname]['internal'](key)
+                        else:
+                            raise ValueError("Prior '{}' is not a known distribution.".format(distname))
+                    else:
+                        raise ValueError("Prior '{}' is not a known distribution.".format(distname))
+
+    def set_likelihood(self):
+        """
+        Convert any tupak likelihoods to PyMC3 distributions.
+        """
+
+        pymc3 = self.external_sampler
+
+        with self.pymc3_model:
+            #  check if it is a predefined likelhood function
+            if self.likelihood.__class__.__name__ == 'GaussianLikelihood':
+                # check required attributes exist
+                if (not hasattr(self.likelihood, 'sigma') or
+                    not hasattr(self.likelihood, 'x') or
+                    not hasattr(self.likelihood, 'y') or
+                    not hasattr(self.likelihood, 'function') or
+                    not hasattr(self.likelihood, 'function_keys')):
+                    raise ValueError("Gaussian Likelihood does not have all the correct attributes!")
+                
+                if 'sigma' in self.pymc3_priors:
+                    # if sigma is suppled use that value
+                    if self.likelihood.sigma is None:
+                        self.likelihood.sigma = self.pymc3_priors.pop('sigma')
+                    else:
+                        del self.pymc3_priors['sigma']
+
+                for key in self.pymc3_priors:
+                    if key not in self.likelihood.function_keys:
+                        raise ValueError("Prior key '{}' is not a function key!".format(key))
+
+                model = self.likelihood.function(self.likelihood.x, **self.pymc3_priors)
+
+                # set the distribution
+                pymc3.Normal('likelihood', mu=model, sd=self.likelihood.sigma,
+                             observed=self.likelihood.y)
+            elif self.likelihood.__class__.__name__ == 'PoissonLikelihood':
+                # check required attributes exist
+                if (not hasattr(self.likelihood, 'x') or
+                    not hasattr(self.likelihood, 'y') or
+                    not hasattr(self.likelihood, 'function') or
+                    not hasattr(self.likelihood, 'function_keys')):
+                    raise ValueError("Poisson Likelihood does not have all the correct attributes!")
+                
+                for key in self.pymc3_priors:
+                    if key not in self.likelihood.function_keys:
+                        raise ValueError("Prior key '{}' is not a function key!".format(key))
+
+                # get rate function
+                model = self.likelihood.function(self.likelihood.x, **self.pymc3_priors)
+
+                # set the distribution
+                pymc3.Poisson('likelihood', mu=model, observed=self.likelihood.y)
+            elif self.likelihood.__class__.__name__ == 'ExponentialLikelihood':
+                # check required attributes exist
+                if (not hasattr(self.likelihood, 'x') or
+                    not hasattr(self.likelihood, 'y') or
+                    not hasattr(self.likelihood, 'function') or
+                    not hasattr(self.likelihood, 'function_keys')):
+                    raise ValueError("Exponential Likelihood does not have all the correct attributes!")
+
+                for key in self.pymc3_priors:
+                    if key not in self.likelihood.function_keys:
+                        raise ValueError("Prior key '{}' is not a function key!".format(key))
+
+                # get mean function
+                model = self.likelihood.function(self.likelihood.x, **self.pymc3_priors)
+
+                # set the distribution
+                pymc3.Exponential('likelihood', lam=1./model, observed=self.likelihood.y)
+            elif self.likelihood.__class__.__name__ == 'StudentTLikelihood':
+                # check required attributes exist
+                if (not hasattr(self.likelihood, 'x') or
+                    not hasattr(self.likelihood, 'y') or
+                    not hasattr(self.likelihood, 'nu') or
+                    not hasattr(self.likelihood, 'sigma') or
+                    not hasattr(self.likelihood, 'function') or
+                    not hasattr(self.likelihood, 'function_keys')):
+                    raise ValueError("StudentT Likelihood does not have all the correct attributes!")
+
+                if 'nu' in self.pymc3_priors:
+                    # if nu is suppled use that value
+                    if self.likelihood.nu is None:
+                        self.likelihood.nu = self.pymc3_priors.pop('nu')
+                    else:
+                        del self.pymc3_priors['nu']
+
+                for key in self.pymc3_priors:
+                    if key not in self.likelihood.function_keys:
+                        raise ValueError("Prior key '{}' is not a function key!".format(key))
+
+                model = self.likelihood.function(self.likelihood.x, **self.pymc3_priors)
+
+                # set the distribution
+                pymc3.StudentT('likelihood', nu=self.likelihood.nu, mu=model, sd=self.likelihood.sigma, observed=self.likelihood.y)
+            else:
+                raise ValueError("Unknown likelihood has been provided")
+
+    def calculate_autocorrelation(self, samples, c=3):
+        """ Uses the `emcee.autocorr` module to estimate the autocorrelation
+
+        Parameters
+        ----------
+        c: float
+            The minimum number of autocorrelation times needed to trust the
+            estimate (default: `3`). See `emcee.autocorr.integrated_time`.
+        """
+
+        import emcee
+        try:
+            self.result.max_autocorrelation_time = int(np.max(
+                emcee.autocorr.integrated_time(samples, c=c)))
+            logger.info("Max autocorr time = {}".format(
+                self.result.max_autocorrelation_time))
+        except emcee.autocorr.AutocorrError as e:
+            self.result.max_autocorrelation_time = None
+            logger.info("Unable to calculate autocorr time: {}".format(e))
+
+
 def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
                 sampler='dynesty', use_ratio=None, injection_parameters=None,
                 conversion_function=None, plot=False, default_priors_file=None,