diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py index 9ade52fc6f8f4ea3b10cf0a117844a9b6fa22e1d..fe90758ef94da23dc47baa86326a7e37112485d9 100644 --- a/bilby/core/sampler/base_sampler.py +++ b/bilby/core/sampler/base_sampler.py @@ -39,6 +39,11 @@ class Sampler(object): The result class to use. By default, `bilby.core.result.Result` is used, but objects which inherit from this class can be given providing additional methods. + soft_init: bool, optional + Switch to enable a soft initialization that prevents the likelihood + from being tested before running the sampler. This is relevant when + using custom likelihoods that must NOT be initialized on the main thread + when using multiprocessing, e.g. when using tensorflow in the likelihood. **kwargs: dict Additional keyword arguments @@ -86,7 +91,7 @@ class Sampler(object): self, likelihood, priors, outdir='outdir', label='label', use_ratio=False, plot=False, skip_import_verification=False, injection_parameters=None, meta_data=None, result_class=None, - likelihood_benchmark=False, + likelihood_benchmark=False, soft_init=False, **kwargs): self.likelihood = likelihood if isinstance(priors, PriorDict): @@ -108,9 +113,12 @@ class Sampler(object): self._fixed_parameter_keys = list() self._constraint_parameter_keys = list() self._initialise_parameters() - self._verify_parameters() - self._time_likelihood() - self._verify_use_ratio() + + if not soft_init: + self._verify_parameters() + self._time_likelihood() + self._verify_use_ratio() + self.kwargs = kwargs self._check_cached_result()