diff --git a/test/likelihood_tests.py b/test/likelihood_tests.py index a27b36df5f4aae3e53a44d9d1295f2019d1e1f67..a3d6da004a6b6690332c957acee07256c6b3d67b 100644 --- a/test/likelihood_tests.py +++ b/test/likelihood_tests.py @@ -4,12 +4,127 @@ from tupak.core import prior from tupak.core.result import Result import unittest from mock import MagicMock +import mock import numpy as np import inspect import os import copy +class TestLikelihoodBase(unittest.TestCase): + + def setUp(self): + self.likelihood = tupak.core.likelihood.Likelihood() + + def tearDown(self): + del self.likelihood + + def test_base_log_likelihood(self): + self.assertTrue(np.isnan(self.likelihood.log_likelihood())) + + def test_base_noise_log_likelihood(self): + self.assertTrue(np.isnan(self.likelihood.noise_log_likelihood())) + + def test_base_log_likelihood_ratio(self): + self.assertTrue(np.isnan(self.likelihood.log_likelihood_ratio())) + + +class TestAnalytical1DLikelihood(unittest.TestCase): + + def setUp(self): + self.x = np.arange(start=0, stop=100, step=1) + self.y = np.arange(start=0, stop=100, step=1) + + def test_func(x, parameter1, parameter2): + return parameter1 * x + parameter2 + + self.func = test_func + self.parameter1_value = 4 + self.parameter2_value = 7 + self.analytical_1d_likelihood = tupak.likelihood.Analytical1DLikelihood(x=self.x, y=self.y, func=self.func) + self.analytical_1d_likelihood.parameters['parameter1'] = self.parameter1_value + self.analytical_1d_likelihood.parameters['parameter2'] = self.parameter2_value + + def tearDown(self): + del self.x + del self.y + del self.func + del self.analytical_1d_likelihood + del self.parameter1_value + del self.parameter2_value + + def test_init_x(self): + self.assertTrue(np.array_equal(self.x, self.analytical_1d_likelihood.x)) + + def test_set_x_to_array(self): + new_x = np.arange(start=0, stop=50, step=2) + self.analytical_1d_likelihood.x = new_x + self.assertTrue(np.array_equal(new_x, self.analytical_1d_likelihood.x)) + + def test_set_x_to_int(self): + new_x = 5 + self.analytical_1d_likelihood.x = new_x + expected_x = np.array([new_x]) + self.assertTrue(np.array_equal(expected_x, self.analytical_1d_likelihood.x)) + + def test_set_x_to_float(self): + new_x = 5.3 + self.analytical_1d_likelihood.x = new_x + expected_x = np.array([new_x]) + self.assertTrue(np.array_equal(expected_x, self.analytical_1d_likelihood.x)) + + def test_init_y(self): + self.assertTrue(np.array_equal(self.y, self.analytical_1d_likelihood.y)) + + def test_set_y_to_array(self): + new_y = np.arange(start=0, stop=50, step=2) + self.analytical_1d_likelihood.y = new_y + self.assertTrue(np.array_equal(new_y, self.analytical_1d_likelihood.y)) + + def test_set_y_to_int(self): + new_y = 5 + self.analytical_1d_likelihood.y = new_y + expected_y = np.array([new_y]) + self.assertTrue(np.array_equal(expected_y, self.analytical_1d_likelihood.y)) + + def test_set_y_to_float(self): + new_y = 5.3 + self.analytical_1d_likelihood.y = new_y + expected_y = np.array([new_y]) + self.assertTrue(np.array_equal(expected_y, self.analytical_1d_likelihood.y)) + + def test_init_func(self): + self.assertEqual(self.func, self.analytical_1d_likelihood.func) + + def test_set_func(self): + def new_func(x): + return x + with self.assertRaises(AttributeError): + # noinspection PyPropertyAccess + self.analytical_1d_likelihood.func = new_func + + def test_parameters(self): + expected_parameters = dict(parameter1=self.parameter1_value, + parameter2=self.parameter2_value) + self.assertDictEqual(expected_parameters, self.analytical_1d_likelihood.parameters) + + def test_n(self): + self.assertEqual(len(self.x), self.analytical_1d_likelihood.n) + + def test_set_n(self): + with self.assertRaises(AttributeError): + # noinspection PyPropertyAccess + self.analytical_1d_likelihood.n = 2 + + def test_model_parameters(self): + sigma = 5 + self.analytical_1d_likelihood.sigma = sigma + self.analytical_1d_likelihood.parameters['sigma'] = sigma + expected_model_parameters = dict(parameter1=self.parameter1_value, + parameter2=self.parameter2_value) + self.assertDictEqual(expected_model_parameters, self.analytical_1d_likelihood.model_parameters) + + class TestGaussianLikelihood(unittest.TestCase): def setUp(self): @@ -20,6 +135,7 @@ class TestGaussianLikelihood(unittest.TestCase): def test_function(x, m, c): return m * x + c + self.function = test_function def tearDown(self): @@ -47,7 +163,7 @@ class TestGaussianLikelihood(unittest.TestCase): self.assertTrue(type(likelihood.sigma) == type(sigma_array)) self.assertTrue(all(likelihood.sigma == sigma_array)) - def test_unknown_float_sigma(self): + def test_set_sigma_None(self): likelihood = tupak.core.likelihood.GaussianLikelihood( self.x, self.y, self.function, sigma=None) likelihood.parameters['m'] = 2 @@ -55,37 +171,29 @@ class TestGaussianLikelihood(unittest.TestCase): self.assertTrue(likelihood.sigma is None) with self.assertRaises(TypeError): likelihood.log_likelihood() + + def test_sigma_float(self): + likelihood = tupak.core.likelihood.GaussianLikelihood( + self.x, self.y, self.function, sigma=None) + likelihood.parameters['m'] = 2 + likelihood.parameters['c'] = 0 likelihood.parameters['sigma'] = 1 likelihood.log_likelihood() self.assertTrue(likelihood.sigma is None) - def test_y(self): - likelihood = tupak.core.likelihood.GaussianLikelihood( - self.x, self.y, self.function, self.sigma) - self.assertTrue(all(likelihood.y == self.y)) - - def test_x(self): - likelihood = tupak.core.likelihood.GaussianLikelihood( - self.x, self.y, self.function, self.sigma) - self.assertTrue(all(likelihood.x == self.x)) - - def test_N(self): - likelihood = tupak.core.likelihood.GaussianLikelihood( - self.x, self.y, self.function, self.sigma) - self.assertTrue(likelihood.N == len(self.x)) - class TestStudentTLikelihood(unittest.TestCase): - + def setUp(self): self.N = 100 - self.nu = self.N-2 + self.nu = self.N - 2 self.sigma = 1 self.x = np.linspace(0, 1, self.N) self.y = 2 * self.x + 1 + np.random.normal(0, self.sigma, self.N) def test_function(x, m, c): return m * x + c + self.function = test_function def tearDown(self): @@ -103,42 +211,61 @@ class TestStudentTLikelihood(unittest.TestCase): likelihood.log_likelihood() self.assertEqual(likelihood.sigma, self.sigma) - def test_unknown_float_nu(self): + def test_set_nu_none(self): likelihood = tupak.core.likelihood.StudentTLikelihood( self.x, self.y, self.function, nu=None) likelihood.parameters['m'] = 2 likelihood.parameters['c'] = 0 self.assertTrue(likelihood.nu is None) - with self.assertRaises((TypeError, ValueError)): + + def test_log_likelihood_nu_none(self): + likelihood = tupak.core.likelihood.StudentTLikelihood( + self.x, self.y, self.function, nu=None) + likelihood.parameters['m'] = 2 + likelihood.parameters['c'] = 0 + with self.assertRaises((ValueError, TypeError)): + # ValueError in Python2, TypeError in Python3 likelihood.log_likelihood() - likelihood.parameters['nu'] = 98 - likelihood.log_likelihood() - self.assertTrue(likelihood.nu is None) - def test_y(self): + def test_log_likelihood_nu_zero(self): likelihood = tupak.core.likelihood.StudentTLikelihood( - self.x, self.y, self.function, self.nu, self.sigma) - self.assertTrue(all(likelihood.y == self.y)) + self.x, self.y, self.function, nu=0) + likelihood.parameters['m'] = 2 + likelihood.parameters['c'] = 0 + with self.assertRaises(ValueError): + likelihood.log_likelihood() - def test_x(self): + def test_log_likelihood_nu_negative(self): likelihood = tupak.core.likelihood.StudentTLikelihood( - self.x, self.y, self.function, self.nu, self.sigma) - self.assertTrue(all(likelihood.x == self.x)) + self.x, self.y, self.function, nu=-1) + likelihood.parameters['m'] = 2 + likelihood.parameters['c'] = 0 + with self.assertRaises(ValueError): + likelihood.log_likelihood() - def test_N(self): + def test_setting_nu_positive_does_not_change_class_attribute(self): likelihood = tupak.core.likelihood.StudentTLikelihood( - self.x, self.y, self.function, self.nu, self.sigma) - self.assertTrue(likelihood.N == len(self.x)) + self.x, self.y, self.function, nu=None) + likelihood.parameters['m'] = 2 + likelihood.parameters['c'] = 0 + likelihood.parameters['nu'] = 98 + self.assertTrue(likelihood.nu is None) + + def test_lam(self): + likelihood = tupak.core.likelihood.StudentTLikelihood( + self.x, self.y, self.function, nu=0, sigma=0.5) + + self.assertAlmostEqual(4.0, likelihood.lam) class TestPoissonLikelihood(unittest.TestCase): - + def setUp(self): self.N = 100 self.mu = 5 self.x = np.linspace(0, 1, self.N) self.y = np.random.poisson(self.mu, self.N) - self.yfloat = np.copy(self.y)*1. + self.yfloat = np.copy(self.y) * 1. self.yneg = np.copy(self.y) self.yneg[0] = -1 @@ -146,10 +273,11 @@ class TestPoissonLikelihood(unittest.TestCase): return c def test_function_array(x, c): - return np.ones(len(x))*c + return np.ones(len(x)) * c self.function = test_function self.function_array = test_function_array + self.poisson_likelihood = tupak.core.likelihood.PoissonLikelihood(self.x, self.y, self.function) def tearDown(self): del self.N @@ -160,23 +288,22 @@ class TestPoissonLikelihood(unittest.TestCase): del self.yneg del self.function del self.function_array + del self.poisson_likelihood - def test_non_integer(self): + def test_init_y_non_integer(self): with self.assertRaises(ValueError): tupak.core.likelihood.PoissonLikelihood( self.x, self.yfloat, self.function) - def test_negative(self): + def test_init__y_negative(self): with self.assertRaises(ValueError): tupak.core.likelihood.PoissonLikelihood( self.x, self.yneg, self.function) def test_neg_rate(self): - likelihood = tupak.core.likelihood.PoissonLikelihood( - self.x, self.y, self.function) - likelihood.parameters['c'] = -2 + self.poisson_likelihood.parameters['c'] = -2 with self.assertRaises(ValueError): - likelihood.log_likelihood() + self.poisson_likelihood.log_likelihood() def test_neg_rate_array(self): likelihood = tupak.core.likelihood.PoissonLikelihood( @@ -185,24 +312,53 @@ class TestPoissonLikelihood(unittest.TestCase): with self.assertRaises(ValueError): likelihood.log_likelihood() - def test_y(self): - likelihood = tupak.core.likelihood.PoissonLikelihood( - self.x, self.y, self.function) - self.assertTrue(all(likelihood.y == self.y)) + def test_init_y(self): + self.assertTrue(np.array_equal(self.y, self.poisson_likelihood.y)) - def test_x(self): - likelihood = tupak.core.likelihood.PoissonLikelihood( - self.x, self.y, self.function) - self.assertTrue(all(likelihood.x == self.x)) + def test_set_y_to_array(self): + new_y = np.arange(start=0, stop=50, step=2) + self.poisson_likelihood.y = new_y + self.assertTrue(np.array_equal(new_y, self.poisson_likelihood.y)) - def test_N(self): - likelihood = tupak.core.likelihood.PoissonLikelihood( - self.x, self.y, self.function) - self.assertTrue(likelihood.N == len(self.x)) + def test_set_y_to_positive_int(self): + new_y = 5 + self.poisson_likelihood.y = new_y + expected_y = np.array([new_y]) + self.assertTrue(np.array_equal(expected_y, self.poisson_likelihood.y)) + + def test_set_y_to_negative_int(self): + with self.assertRaises(ValueError): + self.poisson_likelihood.y = -5 + + def test_set_y_to_float(self): + with self.assertRaises(ValueError): + self.poisson_likelihood.y = 5.3 + + def test_log_likelihood_wrong_func_return_type(self): + poisson_likelihood = tupak.likelihood.PoissonLikelihood(x=self.x, y=self.y, func=lambda x: 'test') + with self.assertRaises(ValueError): + poisson_likelihood.log_likelihood() + + def test_log_likelihood_negative_func_return_element(self): + poisson_likelihood = tupak.likelihood.PoissonLikelihood(x=self.x, y=self.y, func=lambda x: np.array([3, 6, -2])) + with self.assertRaises(ValueError): + poisson_likelihood.log_likelihood() + + def test_log_likelihood_zero_func_return_element(self): + poisson_likelihood = tupak.likelihood.PoissonLikelihood(x=self.x, y=self.y, func=lambda x: np.array([3, 6, 0])) + self.assertEqual(-np.inf, poisson_likelihood.log_likelihood()) + + def test_log_likelihood_dummy(self): + """ Merely tests if it goes into the right if else bracket """ + poisson_likelihood = tupak.likelihood.PoissonLikelihood(x=self.x, y=self.y, + func=lambda x: np.linspace(1, 100, self.N)) + with mock.patch('numpy.sum') as m: + m.return_value = 1 + self.assertEqual(0, poisson_likelihood.log_likelihood()) class TestExponentialLikelihood(unittest.TestCase): - + def setUp(self): self.N = 100 self.mu = 5 @@ -215,10 +371,12 @@ class TestExponentialLikelihood(unittest.TestCase): return c def test_function_array(x, c): - return c*np.ones(len(x)) + return c * np.ones(len(x)) self.function = test_function self.function_array = test_function_array + self.exponential_likelihood = tupak.core.likelihood.ExponentialLikelihood(x=self.x, y=self.y, + func=self.function) def tearDown(self): del self.N @@ -245,20 +403,44 @@ class TestExponentialLikelihood(unittest.TestCase): likelihood.parameters['c'] = -1 self.assertEqual(likelihood.log_likelihood(), -np.inf) - def test_y(self): - likelihood = tupak.core.likelihood.ExponentialLikelihood( - self.x, self.y, self.function) - self.assertTrue(all(likelihood.y == self.y)) + def test_init_y(self): + self.assertTrue(np.array_equal(self.y, self.exponential_likelihood.y)) - def test_x(self): - likelihood = tupak.core.likelihood.ExponentialLikelihood( - self.x, self.y, self.function) - self.assertTrue(all(likelihood.x == self.x)) + def test_set_y_to_array(self): + new_y = np.arange(start=0, stop=50, step=2) + self.exponential_likelihood.y = new_y + self.assertTrue(np.array_equal(new_y, self.exponential_likelihood.y)) - def test_N(self): - likelihood = tupak.core.likelihood.ExponentialLikelihood( - self.x, self.y, self.function) - self.assertTrue(likelihood.N == len(self.x)) + def test_set_y_to_positive_int(self): + new_y = 5 + self.exponential_likelihood.y = new_y + expected_y = np.array([new_y]) + self.assertTrue(np.array_equal(expected_y, self.exponential_likelihood.y)) + + def test_set_y_to_negative_int(self): + with self.assertRaises(ValueError): + self.exponential_likelihood.y = -5 + + def test_set_y_to_positive_float(self): + new_y = 5.3 + self.exponential_likelihood.y = new_y + self.assertTrue(np.array_equal(np.array([5.3]), self.exponential_likelihood.y)) + + def test_set_y_to_negative_float(self): + with self.assertRaises(ValueError): + self.exponential_likelihood.y = -5.3 + + def test_set_y_to_nd_array_with_negative_element(self): + with self.assertRaises(ValueError): + self.exponential_likelihood.y = np.array([4.3, -1.2, 4]) + + def test_log_likelihood_default(self): + """ Merely tests that it ends up at the right place in the code """ + exponential_likelihood = tupak.core.likelihood.ExponentialLikelihood(x=self.x, y=self.y, + func=lambda x: np.array([4.2])) + with mock.patch('numpy.sum') as m: + m.return_value = 3 + self.assertEqual(-3, exponential_likelihood.log_likelihood()) if __name__ == '__main__': diff --git a/tupak/core/likelihood.py b/tupak/core/likelihood.py index 98a716bb4430dcb47160c5653dadb31c7f5d8c7f..b4bfaace99e47ed9a01868e9f2dae2bd7ebc3ce8 100644 --- a/tupak/core/likelihood.py +++ b/tupak/core/likelihood.py @@ -4,6 +4,7 @@ import inspect import numpy as np from scipy.special import gammaln + class Likelihood(object): def __init__(self, parameters=None): @@ -43,8 +44,89 @@ class Likelihood(object): return self.log_likelihood() - self.noise_log_likelihood() -class GaussianLikelihood(Likelihood): - def __init__(self, x, y, function, sigma=None): +class Analytical1DLikelihood(Likelihood): + """ + A general class for 1D analytical functions. The model + parameters are inferred from the arguments of function + + Parameters + ---------- + x, y: array_like + The data to analyse + func: + The python function to fit to the data. Note, this must take the + dependent variable as its first argument. The other arguments + will require a prior and will be sampled over (unless a fixed + value is given). + """ + + def __init__(self, x, y, func): + parameters = self._infer_parameters_from_function(func) + Likelihood.__init__(self, dict.fromkeys(parameters)) + self.x = x + self.y = y + self.__func = func + self.__function_keys = list(self.parameters.keys()) + + @property + def func(self): + """ Make func read-only """ + return self.__func + + @property + def model_parameters(self): + """ This sets up the function only parameters (i.e. not sigma for the GaussianLikelihood) """ + return {key: self.parameters[key] for key in self.function_keys} + + @property + def function_keys(self): + """ Makes function_keys read_only """ + return self.__function_keys + + @staticmethod + def _infer_parameters_from_function(func): + """ Infers the arguments of function (except the first arg which is + assumed to be the dep. variable) + """ + parameters = inspect.getargspec(func).args + parameters.pop(0) + return parameters + + @property + def n(self): + """ The number of data points """ + return len(self.x) + + @property + def x(self): + """ The independent variable. Setter assures that single numbers will be converted to arrays internally """ + return self.__x + + @x.setter + def x(self, x): + if isinstance(x, int) or isinstance(x, float): + x = np.array([x]) + self.__x = x + + @property + def y(self): + """ The dependent variable. Setter assures that single numbers will be converted to arrays internally """ + return self.__y + + @y.setter + def y(self, y): + if isinstance(y, int) or isinstance(y, float): + y = np.array([y]) + self.__y = y + + @property + def residual(self): + """ Residual of the function against the data. """ + return self.y - self.func(self.x, **self.model_parameters) + + +class GaussianLikelihood(Analytical1DLikelihood): + def __init__(self, x, y, func, sigma=None): """ A general Gaussian likelihood for known or unknown noise - the model parameters are inferred from the arguments of function @@ -53,7 +135,7 @@ class GaussianLikelihood(Likelihood): ---------- x, y: array_like The data to analyse - function: + func: The python function to fit to the data. Note, this must take the dependent variable as its first argument. The other arguments will require a prior and will be sampled over (unless a fixed @@ -66,52 +148,31 @@ class GaussianLikelihood(Likelihood): to that for `x` and `y`. """ - parameters = self._infer_parameters_from_function(function) - Likelihood.__init__(self, dict.fromkeys(parameters)) - - self.x = x - self.y = y + Analytical1DLikelihood.__init__(self, x=x, y=y, func=func) self.sigma = sigma - self.function = function # Check if sigma was provided, if not it is a parameter - self.function_keys = list(self.parameters.keys()) if self.sigma is None: self.parameters['sigma'] = None - @staticmethod - def _infer_parameters_from_function(func): - """ Infers the arguments of function (except the first arg which is - assumed to be the dep. variable) - """ - parameters = inspect.getargspec(func).args - parameters.pop(0) - return parameters - - @property - def N(self): - """ The number of data points """ - return len(self.x) - def log_likelihood(self): - # This checks if sigma has been set in parameters. If so, that value - # will be used. Otherwise, the attribute sigma is used. The logic is - # that if sigma is not in parameters the attribute is used which was - # given at init (i.e. the known sigma as either a float or array). - sigma = self.parameters.get('sigma', self.sigma) - - # This sets up the function only parameters (i.e. not sigma) - model_parameters = {k: self.parameters[k] for k in self.function_keys} + return self.__summed_log_likelihood(sigma=self.__get_sigma()) - # Calculate the residual - res = self.y - self.function(self.x, **model_parameters) + def __get_sigma(self): + """ + This checks if sigma has been set in parameters. If so, that value + will be used. Otherwise, the attribute sigma is used. The logic is + that if sigma is not in parameters the attribute is used which was + given at init (i.e. the known sigma as either a float or array). + """ + return self.parameters.get('sigma', self.sigma) - # Return the summed log likelihood - return -0.5 * (np.sum((res / sigma)**2) - + self.N * np.log(2 * np.pi * sigma**2)) + def __summed_log_likelihood(self, sigma): + return -0.5 * (np.sum((self.residual / sigma) ** 2) + + self.n * np.log(2 * np.pi * sigma ** 2)) -class PoissonLikelihood(Likelihood): +class PoissonLikelihood(Analytical1DLikelihood): def __init__(self, x, y, func): """ A general Poisson likelihood for a rate - the model parameters are @@ -134,82 +195,37 @@ class PoissonLikelihood(Likelihood): fixed value is given). """ - parameters = self._infer_parameters_from_function(func) - Likelihood.__init__(self, dict.fromkeys(parameters)) - - self.x = x # the dependent variable - self.y = y # the counts - - # check values are non-negative integers - if isinstance(self.y, int): - # convert to numpy array if passing a single integer - self.y = np.array([self.y]) - - # check array is an integer array - if self.y.dtype.kind not in 'ui': - raise ValueError("Data must be non-negative integers") - - # check for non-negative integers - if np.any(self.y < 0): - raise ValueError("Data must be non-negative integers") - - self.function = func - - self.function_keys = list(self.parameters.keys()) - - @staticmethod - def _infer_parameters_from_function(func): - """ Infers the arguments of function (except the first arg which is - assumed to be the dep. variable) - """ - parameters = inspect.getargspec(func).args - parameters.pop(0) - return parameters + Analytical1DLikelihood.__init__(self, x=x, y=y, func=func) @property - def N(self): - """ The number of data points """ - return len(self.y) + def y(self): + """ Property assures that y-value is a positive integer. """ + return self.__y + + @y.setter + def y(self, y): + if not isinstance(y, np.ndarray): + y = np.array([y]) + # check array is a non-negative integer array + if y.dtype.kind not in 'ui' or np.any(y < 0): + raise ValueError("Data must be non-negative integers") + self.__y = y def log_likelihood(self): - # This sets up the function only parameters (i.e. not sigma) - model_parameters = {k: self.parameters[k] for k in self.function_keys} - - # Calculate the rate - rate = self.function(self.x, **model_parameters) - - # sum of log factorial of counts - sumlogfactorial = np.sum(gammaln(self.y + 1)) - - # check if rate is a single value - if isinstance(rate, float): - # check rate is positive - if rate < 0.: - raise ValueError(("Poisson rate function returns a negative ", - "value!")) - - if rate == 0.: - return -np.inf - else: - # Return the summed log likelihood - return (-self.N*rate + np.sum(self.y*np.log(rate)) - -sumlogfactorial) - elif isinstance(rate, np.ndarray): - # check rates are positive - if np.any(rate < 0.): - raise ValueError(("Poisson rate function returns a negative", - " value!")) - - if np.any(rate == 0.): - return -np.inf - else: - return (np.sum(-rate + self.counts*np.log(rate)) - -sumlogfactorial) + rate = self.func(self.x, **self.model_parameters) + if not isinstance(rate, np.ndarray): + raise ValueError("Poisson rate function returns wrong value type! " + "Is {} when it should be numpy.ndarray".format(type(rate))) + elif np.any(rate < 0.): + raise ValueError(("Poisson rate function returns a negative", + " value!")) + elif np.any(rate == 0.): + return -np.inf else: - raise ValueError("Poisson rate function returns wrong value type!") + return np.sum(-rate + self.y * np.log(rate)) - np.sum(gammaln(self.y + 1)) -class ExponentialLikelihood(Likelihood): +class ExponentialLikelihood(Analytical1DLikelihood): def __init__(self, x, y, func): """ An exponential likelihood function. @@ -226,52 +242,29 @@ class ExponentialLikelihood(Likelihood): value is given). The model should return the expected mean of the exponential distribution for each data point. """ - - parameters = self._infer_parameters_from_function(func) - Likelihood.__init__(self, dict.fromkeys(parameters)) - - self.x = x # the dependent variable - self.y = y # the observed data - - # check for non-negative values - if np.any(self.y < 0): - raise ValueError("Data must be non-negative") - - self.function = func - - # Check if sigma was provided, if not it is a parameter - self.function_keys = list(self.parameters.keys()) - - @staticmethod - def _infer_parameters_from_function(func): - """ Infers the arguments of function (except the first arg which is - assumed to be the dep. variable) - """ - parameters = inspect.getargspec(func).args - parameters.pop(0) - return parameters + Analytical1DLikelihood.__init__(self, x=x, y=y, func=func) @property - def N(self): - """ The number of data points """ - return len(self.y) + def y(self): + """ Property assures that y-value is positive. """ + return self.__y + + @y.setter + def y(self, y): + if not isinstance(y, np.ndarray): + y = np.array([y]) + if np.any(y < 0): + raise ValueError("Data must be non-negative") + self.__y = y def log_likelihood(self): - # This sets up the function only parameters (i.e. not sigma) - model_parameters = {k: self.parameters[k] for k in self.function_keys} - - # Calculate the mean of the distribution - mu = self.function(self.x, **model_parameters) - - # return -inf if any mean values are negative + mu = self.func(self.x, **self.model_parameters) if np.any(mu < 0.): return -np.inf - - # Return the summed log likelihood - return -np.sum(np.log(mu) + (self.y/mu)) + return -np.sum(np.log(mu) + (self.y / mu)) -class StudentTLikelihood(Likelihood): +class StudentTLikelihood(Analytical1DLikelihood): def __init__(self, x, y, func, nu=None, sigma=1.): """ A general Student's t-likelihood for known or unknown number of degrees @@ -301,56 +294,33 @@ class StudentTLikelihood(Likelihood): Set the scale of the distribution. If not given then this defaults to 1, which specifies a standard (central) Student's t-distribution """ + Analytical1DLikelihood.__init__(self, x=x, y=y, func=func) - parameters = self._infer_parameters_from_function(func) - Likelihood.__init__(self, dict.fromkeys(parameters)) - - self.x = x - self.y = y self.nu = nu self.sigma = sigma - self.function = func # Check if nu was provided, if not it is a parameter - self.function_keys = list(self.parameters.keys()) if self.nu is None: self.parameters['nu'] = None - @staticmethod - def _infer_parameters_from_function(func): - """ Infers the arguments of function (except the first arg which is - assumed to be the dep. variable) - """ - parameters = inspect.getargspec(func).args - parameters.pop(0) - return parameters - @property - def N(self): - """ The number of data points """ - return len(self.x) + def lam(self): + """ Converts 'scale' to 'precision' """ + return 1. / self.sigma ** 2 def log_likelihood(self): - # This checks if nu or sigma have been set in parameters. If so, those - # values will be used. Otherwise, the attribute sigma is used. The logic is - # that if nu is not in parameters the attribute is used which was - # given at init (i.e. the known nu as a float). - nu = self.parameters.get('nu', self.nu) - - if nu <= 0.: + if self.__get_nu() <= 0.: raise ValueError("Number of degrees of freedom for Student's t-likelihood must be positive") - # This sets up the function only parameters (i.e. not sigma) - model_parameters = {k: self.parameters[k] for k in self.function_keys} - - # Calculate the residual - res = self.y - self.function(self.x, **model_parameters) + return self.__summed_log_likelihood(self.__get_nu()) - # convert "scale" to "precision" - lam = 1./self.sigma**2 + def __get_nu(self): + """ This checks if nu or sigma have been set in parameters. If so, those + values will be used. Otherwise, the attribute nu is used. The logic is + that if nu is not in parameters the attribute is used which was + given at init (i.e. the known nu as a float).""" + return self.parameters.get('nu', self.nu) - # Return the summed log likelihood - return (self.N*(gammaln((nu + 1.0) / 2.0) - + .5 * np.log(lam / (nu * np.pi)) - - gammaln(nu / 2.0)) - - (nu + 1.0) / 2.0 * np.sum(np.log1p(lam * res**2 / nu))) + def __summed_log_likelihood(self, nu): + return self.n * (gammaln((nu + 1.0) / 2.0) + .5 * np.log(self.lam / (nu * np.pi)) - gammaln(nu / 2.0)) \ + - (nu + 1.0) / 2.0 * np.sum(np.log1p(self.lam * self.residual ** 2 / nu))