From eac5426b354cfaf772112139675a08ce67993cbb Mon Sep 17 00:00:00 2001
From: Moritz Huebner <moritz.huebner@ligo.org>
Date: Mon, 1 Apr 2019 18:38:19 -0500
Subject: [PATCH] Merge remote-tracking branch 'origin/master' into
 245-proposal-library

# Conflicts:
#	bilby/core/sampler/cpnest.py
#	examples/injection_examples/fast_tutorial.py
---
 bilby/core/prior.py                           | 183 +++++---
 bilby/core/sampler/__init__.py                |   3 +-
 bilby/core/sampler/cpnest.py                  |  84 +++-
 bilby/core/sampler/proposal.py                | 339 ++++++++++++++
 bilby/gw/prior.py                             |  21 +-
 bilby/gw/prior_files/GW150914.prior           |  32 +-
 .../aligned_spin_binary_black_holes.prior     |  32 +-
 bilby/gw/prior_files/binary_black_holes.prior |  44 +-
 .../gw/prior_files/binary_neutron_stars.prior |  40 +-
 bilby/gw/sampler/__init__.py                  |   2 +
 bilby/gw/sampler/proposal.py                  |  49 ++
 .../custom_proposal_example.py                |  68 +++
 test/gw_prior_test.py                         |   8 +-
 test/prior_files/binary_black_holes.prior     |  44 +-
 test/prior_files/binary_neutron_stars.prior   |  40 +-
 test/prior_test.py                            | 137 +++---
 test/proposal_test.py                         | 433 ++++++++++++++++++
 test/sampler_test.py                          |   4 +-
 18 files changed, 1318 insertions(+), 245 deletions(-)
 create mode 100644 bilby/core/sampler/proposal.py
 create mode 100644 bilby/gw/sampler/__init__.py
 create mode 100644 bilby/gw/sampler/proposal.py
 create mode 100644 examples/injection_examples/custom_proposal_example.py
 create mode 100644 test/proposal_test.py

diff --git a/bilby/core/prior.py b/bilby/core/prior.py
index 85ed0fdff..2bac06180 100644
--- a/bilby/core/prior.py
+++ b/bilby/core/prior.py
@@ -407,7 +407,7 @@ class Prior(object):
     _default_latex_labels = dict()
 
     def __init__(self, name=None, latex_label=None, unit=None, minimum=-np.inf,
-                 maximum=np.inf):
+                 maximum=np.inf, periodic_boundary=False):
         """ Implements a Prior object
 
         Parameters
@@ -422,13 +422,15 @@ class Prior(object):
             Minimum of the domain, default=-np.inf
         maximum: float, optional
             Maximum of the domain, default=np.inf
-
+        periodic_boundary: bool, optional
+            Whether or not the boundary condition is periodic. Not available in all samplers.
         """
         self.name = name
         self.latex_label = latex_label
         self.unit = unit
         self.minimum = minimum
         self.maximum = maximum
+        self.periodic_boundary = periodic_boundary
 
     def __call__(self):
         """Overrides the __call__ special method. Calls the sample method.
@@ -632,6 +634,16 @@ class Prior(object):
     def maximum(self, maximum):
         self._maximum = maximum
 
+    @property
+    def periodic_boundary(self):
+        return self._periodic_boundary
+
+    @periodic_boundary.setter
+    def periodic_boundary(self, periodic_boundary):
+        if type(periodic_boundary) is not bool:
+            raise ValueError('{} is not a valid setting for prior boundaries'.format(periodic_boundary))
+        self._periodic_boundary = periodic_boundary
+
     @property
     def __default_latex_label(self):
         if self.name in self._default_latex_labels.keys():
@@ -709,7 +721,7 @@ class DeltaFunction(Prior):
 class PowerLaw(Prior):
 
     def __init__(self, alpha, minimum, maximum, name=None, latex_label=None,
-                 unit=None):
+                 unit=None, periodic_boundary=False):
         """Power law with bounds and alpha, spectral index
 
         Parameters
@@ -726,9 +738,12 @@ class PowerLaw(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, latex_label=latex_label,
-                       minimum=minimum, maximum=maximum, unit=unit)
+                       minimum=minimum, maximum=maximum, unit=unit,
+                       periodic_boundary=periodic_boundary)
         self.alpha = alpha
 
     def rescale(self, val):
@@ -789,13 +804,14 @@ class PowerLaw(Prior):
             normalising = (1 + self.alpha) / (self.maximum ** (1 + self.alpha) -
                                               self.minimum ** (1 + self.alpha))
 
-        return (self.alpha * np.nan_to_num(np.log(val)) + np.log(normalising)) + np.log(1. * self.is_in_prior_range(val))
+        return (self.alpha * np.nan_to_num(np.log(val)) + np.log(normalising)) + np.log(
+            1. * self.is_in_prior_range(val))
 
 
 class Uniform(Prior):
 
     def __init__(self, minimum, maximum, name=None, latex_label=None,
-                 unit=None):
+                 unit=None, periodic_boundary=False):
         """Uniform prior with bounds
 
         Parameters
@@ -810,9 +826,12 @@ class Uniform(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, latex_label=latex_label,
-                       minimum=minimum, maximum=maximum, unit=unit)
+                       minimum=minimum, maximum=maximum, unit=unit,
+                       periodic_boundary=periodic_boundary)
 
     def rescale(self, val):
         Prior.test_valid_for_rescaling(val)
@@ -850,7 +869,7 @@ class Uniform(Prior):
 class LogUniform(PowerLaw):
 
     def __init__(self, minimum, maximum, name=None, latex_label=None,
-                 unit=None):
+                 unit=None, periodic_boundary=False):
         """Log-Uniform prior with bounds
 
         Parameters
@@ -865,9 +884,11 @@ class LogUniform(PowerLaw):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         PowerLaw.__init__(self, name=name, latex_label=latex_label, unit=unit,
-                          minimum=minimum, maximum=maximum, alpha=-1)
+                          minimum=minimum, maximum=maximum, alpha=-1, periodic_boundary=periodic_boundary)
         if self.minimum <= 0:
             logger.warning('You specified a uniform-in-log prior with minimum={}'.format(self.minimum))
 
@@ -875,7 +896,7 @@ class LogUniform(PowerLaw):
 class SymmetricLogUniform(Prior):
 
     def __init__(self, minimum, maximum, name=None, latex_label=None,
-                 unit=None):
+                 unit=None, periodic_boundary=False):
         """Symmetric Log-Uniform distribtions with bounds
 
         This is identical to a Log-Uniform distribition, but mirrored about
@@ -895,9 +916,12 @@ class SymmetricLogUniform(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, latex_label=latex_label,
-                       minimum=minimum, maximum=maximum, unit=unit)
+                       minimum=minimum, maximum=maximum, unit=unit,
+                       periodic_boundary=periodic_boundary)
 
     def rescale(self, val):
         """
@@ -955,7 +979,7 @@ class SymmetricLogUniform(Prior):
 class Cosine(Prior):
 
     def __init__(self, name=None, latex_label=None, unit=None,
-                 minimum=-np.pi / 2, maximum=np.pi / 2):
+                 minimum=-np.pi / 2, maximum=np.pi / 2, periodic_boundary=False):
         """Cosine prior with bounds
 
         Parameters
@@ -970,9 +994,11 @@ class Cosine(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, latex_label=latex_label, unit=unit,
-                       minimum=minimum, maximum=maximum)
+                       minimum=minimum, maximum=maximum, periodic_boundary=periodic_boundary)
 
     def rescale(self, val):
         """
@@ -1001,7 +1027,7 @@ class Cosine(Prior):
 class Sine(Prior):
 
     def __init__(self, name=None, latex_label=None, unit=None, minimum=0,
-                 maximum=np.pi):
+                 maximum=np.pi, periodic_boundary=False):
         """Sine prior with bounds
 
         Parameters
@@ -1016,9 +1042,11 @@ class Sine(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, latex_label=latex_label, unit=unit,
-                       minimum=minimum, maximum=maximum)
+                       minimum=minimum, maximum=maximum, periodic_boundary=periodic_boundary)
 
     def rescale(self, val):
         """
@@ -1046,7 +1074,7 @@ class Sine(Prior):
 
 class Gaussian(Prior):
 
-    def __init__(self, mu, sigma, name=None, latex_label=None, unit=None):
+    def __init__(self, mu, sigma, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Gaussian prior with mean mu and width sigma
 
         Parameters
@@ -1061,8 +1089,10 @@ class Gaussian(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
-        Prior.__init__(self, name=name, latex_label=latex_label, unit=unit)
+        Prior.__init__(self, name=name, latex_label=latex_label, unit=unit, periodic_boundary=periodic_boundary)
         self.mu = mu
         self.sigma = sigma
 
@@ -1094,7 +1124,7 @@ class Gaussian(Prior):
 
 class Normal(Gaussian):
 
-    def __init__(self, mu, sigma, name=None, latex_label=None, unit=None):
+    def __init__(self, mu, sigma, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """A synonym for the Gaussian distribution.
 
         Parameters
@@ -1109,15 +1139,17 @@ class Normal(Gaussian):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
-        Gaussian.__init__(self, mu=mu, sigma=sigma, name=name,
-                          latex_label=latex_label, unit=unit)
+        Gaussian.__init__(self, mu=mu, sigma=sigma, name=name, latex_label=latex_label,
+                          unit=unit, periodic_boundary=periodic_boundary)
 
 
 class TruncatedGaussian(Prior):
 
     def __init__(self, mu, sigma, minimum, maximum, name=None,
-                 latex_label=None, unit=None):
+                 latex_label=None, unit=None, periodic_boundary=False):
         """Truncated Gaussian prior with mean mu and width sigma
 
         https://en.wikipedia.org/wiki/Truncated_normal_distribution
@@ -1138,9 +1170,11 @@ class TruncatedGaussian(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, latex_label=latex_label, unit=unit,
-                       minimum=minimum, maximum=maximum)
+                       minimum=minimum, maximum=maximum, periodic_boundary=periodic_boundary)
         self.mu = mu
         self.sigma = sigma
 
@@ -1176,14 +1210,14 @@ class TruncatedGaussian(Prior):
         -------
         float: Prior probability of val
         """
-        return np.exp(-(self.mu - val) ** 2 / (2 * self.sigma ** 2)) / (
-            2 * np.pi) ** 0.5 / self.sigma / self.normalisation * self.is_in_prior_range(val)
+        return np.exp(-(self.mu - val) ** 2 / (2 * self.sigma ** 2)) / \
+            (2 * np.pi) ** 0.5 / self.sigma / self.normalisation * self.is_in_prior_range(val)
 
 
 class TruncatedNormal(TruncatedGaussian):
 
     def __init__(self, mu, sigma, minimum, maximum, name=None,
-                 latex_label=None, unit=None):
+                 latex_label=None, unit=None, periodic_boundary=False):
         """A synonym for the TruncatedGaussian distribution.
 
         Parameters
@@ -1202,14 +1236,16 @@ class TruncatedNormal(TruncatedGaussian):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         TruncatedGaussian.__init__(self, mu=mu, sigma=sigma, minimum=minimum,
-                                   maximum=maximum, name=name,
-                                   latex_label=latex_label, unit=unit)
+                                   maximum=maximum, name=name, latex_label=latex_label,
+                                   unit=unit, periodic_boundary=periodic_boundary)
 
 
 class HalfGaussian(TruncatedGaussian):
-    def __init__(self, sigma, name=None, latex_label=None, unit=None):
+    def __init__(self, sigma, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """A Gaussian with its mode at zero, and truncated to only be positive.
 
         Parameters
@@ -1222,14 +1258,16 @@ class HalfGaussian(TruncatedGaussian):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         TruncatedGaussian.__init__(self, 0., sigma, minimum=0., maximum=np.inf,
                                    name=name, latex_label=latex_label,
-                                   unit=unit)
+                                   unit=unit, periodic_boundary=periodic_boundary)
 
 
 class HalfNormal(HalfGaussian):
-    def __init__(self, sigma, name=None, latex_label=None, unit=None):
+    def __init__(self, sigma, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """A synonym for the HalfGaussian distribution.
 
         Parameters
@@ -1242,14 +1280,16 @@ class HalfNormal(HalfGaussian):
             See superclass
         unit: str
             See superclass
-
+        periodic_boundary: bool
+            See superclass
         """
         HalfGaussian.__init__(self, sigma=sigma, name=name,
-                              latex_label=latex_label, unit=unit)
+                              latex_label=latex_label, unit=unit,
+                              periodic_boundary=periodic_boundary)
 
 
 class LogNormal(Prior):
-    def __init__(self, mu, sigma, name=None, latex_label=None, unit=None):
+    def __init__(self, mu, sigma, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Log-normal prior with mean mu and width sigma
 
         https://en.wikipedia.org/wiki/Log-normal_distribution
@@ -1266,10 +1306,11 @@ class LogNormal(Prior):
             See superclass
         unit: str
             See superclass
-
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, minimum=0., latex_label=latex_label,
-                       unit=unit)
+                       unit=unit, periodic_boundary=periodic_boundary)
 
         if sigma <= 0.:
             raise ValueError("For the LogGaussian prior the standard deviation must be positive")
@@ -1305,7 +1346,7 @@ class LogNormal(Prior):
 
 
 class LogGaussian(LogNormal):
-    def __init__(self, mu, sigma, name=None, latex_label=None, unit=None):
+    def __init__(self, mu, sigma, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Synonym of LogNormal prior
 
         https://en.wikipedia.org/wiki/Log-normal_distribution
@@ -1322,14 +1363,15 @@ class LogGaussian(LogNormal):
             See superclass
         unit: str
             See superclass
-
+        periodic_boundary: bool
+            See superclass
         """
         LogNormal.__init__(self, mu=mu, sigma=sigma, name=name,
-                           latex_label=latex_label, unit=unit)
+                           latex_label=latex_label, unit=unit, periodic_boundary=periodic_boundary)
 
 
 class Exponential(Prior):
-    def __init__(self, mu, name=None, latex_label=None, unit=None):
+    def __init__(self, mu, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Exponential prior with mean mu
 
         Parameters
@@ -1342,10 +1384,11 @@ class Exponential(Prior):
             See superclass
         unit: str
             See superclass
-
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, minimum=0., latex_label=latex_label,
-                       unit=unit)
+                       unit=unit, periodic_boundary=periodic_boundary)
         self.mu = mu
 
     def rescale(self, val):
@@ -1377,7 +1420,7 @@ class Exponential(Prior):
 
 class StudentT(Prior):
     def __init__(self, df, mu=0., scale=1., name=None, latex_label=None,
-                 unit=None):
+                 unit=None, periodic_boundary=False):
         """Student's t-distribution prior with number of degrees of freedom df,
         mean mu and scale
 
@@ -1397,8 +1440,10 @@ class StudentT(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
-        Prior.__init__(self, name=name, latex_label=latex_label, unit=unit)
+        Prior.__init__(self, name=name, latex_label=latex_label, unit=unit, periodic_boundary=periodic_boundary)
 
         if df <= 0. or scale <= 0.:
             raise ValueError("For the StudentT prior the number of degrees of freedom and scale must be positive")
@@ -1437,7 +1482,7 @@ class StudentT(Prior):
 
 class Beta(Prior):
     def __init__(self, alpha, beta, minimum=0, maximum=1, name=None,
-                 latex_label=None, unit=None):
+                 latex_label=None, unit=None, periodic_boundary=False):
         """Beta distribution
 
         https://en.wikipedia.org/wiki/Beta_distribution
@@ -1461,7 +1506,8 @@ class Beta(Prior):
             See superclass
         unit: str
             See superclass
-
+        periodic_boundary: bool
+            See superclass
         """
         if alpha <= 0. or beta <= 0.:
             raise ValueError("alpha and beta must both be positive values")
@@ -1471,7 +1517,7 @@ class Beta(Prior):
         self._minimum = minimum
         self._maximum = maximum
         Prior.__init__(self, minimum=minimum, maximum=maximum, name=name,
-                       latex_label=latex_label, unit=unit)
+                       latex_label=latex_label, unit=unit, periodic_boundary=periodic_boundary)
         self._set_dist()
 
     def rescale(self, val):
@@ -1565,7 +1611,7 @@ class Beta(Prior):
 
 
 class Logistic(Prior):
-    def __init__(self, mu, scale, name=None, latex_label=None, unit=None):
+    def __init__(self, mu, scale, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Logistic distribution
 
         https://en.wikipedia.org/wiki/Logistic_distribution
@@ -1582,8 +1628,10 @@ class Logistic(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
-        Prior.__init__(self, name=name, latex_label=latex_label, unit=unit)
+        Prior.__init__(self, name=name, latex_label=latex_label, unit=unit, periodic_boundary=periodic_boundary)
 
         if scale <= 0.:
             raise ValueError("For the Logistic prior the scale must be positive")
@@ -1620,7 +1668,7 @@ class Logistic(Prior):
 
 
 class Cauchy(Prior):
-    def __init__(self, alpha, beta, name=None, latex_label=None, unit=None):
+    def __init__(self, alpha, beta, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Cauchy distribution
 
         https://en.wikipedia.org/wiki/Cauchy_distribution
@@ -1637,8 +1685,10 @@ class Cauchy(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
-        Prior.__init__(self, name=name, latex_label=latex_label, unit=unit)
+        Prior.__init__(self, name=name, latex_label=latex_label, unit=unit, periodic_boundary=periodic_boundary)
 
         if beta <= 0.:
             raise ValueError("For the Cauchy prior the scale must be positive")
@@ -1675,7 +1725,7 @@ class Cauchy(Prior):
 
 
 class Lorentzian(Cauchy):
-    def __init__(self, alpha, beta, name=None, latex_label=None, unit=None):
+    def __init__(self, alpha, beta, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Synonym for the Cauchy distribution
 
         https://en.wikipedia.org/wiki/Cauchy_distribution
@@ -1692,13 +1742,15 @@ class Lorentzian(Cauchy):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         Cauchy.__init__(self, alpha=alpha, beta=beta, name=name,
-                        latex_label=latex_label, unit=unit)
+                        latex_label=latex_label, unit=unit, periodic_boundary=periodic_boundary)
 
 
 class Gamma(Prior):
-    def __init__(self, k, theta=1., name=None, latex_label=None, unit=None):
+    def __init__(self, k, theta=1., name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Gamma distribution
 
         https://en.wikipedia.org/wiki/Gamma_distribution
@@ -1715,9 +1767,11 @@ class Gamma(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
         Prior.__init__(self, name=name, minimum=0., latex_label=latex_label,
-                       unit=unit)
+                       unit=unit, periodic_boundary=periodic_boundary)
 
         if k <= 0 or theta <= 0:
             raise ValueError("For the Gamma prior the shape and scale must be positive")
@@ -1755,7 +1809,7 @@ class Gamma(Prior):
 
 
 class ChiSquared(Gamma):
-    def __init__(self, nu, name=None, latex_label=None, unit=None):
+    def __init__(self, nu, name=None, latex_label=None, unit=None, periodic_boundary=False):
         """Chi-squared distribution
 
         https://en.wikipedia.org/wiki/Chi-squared_distribution
@@ -1770,13 +1824,15 @@ class ChiSquared(Gamma):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
         """
 
         if nu <= 0 or not isinstance(nu, int):
             raise ValueError("For the ChiSquared prior the number of degrees of freedom must be a positive integer")
 
         Gamma.__init__(self, name=name, k=nu / 2., theta=2.,
-                       latex_label=latex_label, unit=unit)
+                       latex_label=latex_label, unit=unit, periodic_boundary=periodic_boundary)
 
     @property
     def nu(self):
@@ -1790,7 +1846,7 @@ class ChiSquared(Gamma):
 class Interped(Prior):
 
     def __init__(self, xx, yy, minimum=np.nan, maximum=np.nan, name=None,
-                 latex_label=None, unit=None):
+                 latex_label=None, unit=None, periodic_boundary=False):
         """Creates an interpolated prior function from arrays of xx and yy=p(xx)
 
         Parameters
@@ -1809,6 +1865,8 @@ class Interped(Prior):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
 
         Attributes
         -------
@@ -1827,7 +1885,8 @@ class Interped(Prior):
         self.__all_interpolated = interp1d(x=xx, y=yy, bounds_error=False, fill_value=0)
         Prior.__init__(self, name=name, latex_label=latex_label, unit=unit,
                        minimum=np.nanmax(np.array((min(xx), minimum))),
-                       maximum=np.nanmin(np.array((max(xx), maximum))))
+                       maximum=np.nanmin(np.array((max(xx), maximum))),
+                       periodic_boundary=periodic_boundary)
         self._update_instance()
 
     def __eq__(self, other):
@@ -1920,7 +1979,7 @@ class Interped(Prior):
 class FromFile(Interped):
 
     def __init__(self, file_name, minimum=None, maximum=None, name=None,
-                 latex_label=None, unit=None):
+                 latex_label=None, unit=None, periodic_boundary=False):
         """Creates an interpolated prior function from arrays of xx and yy=p(xx) extracted from a file
 
         Parameters
@@ -1937,6 +1996,8 @@ class FromFile(Interped):
             See superclass
         unit: str
             See superclass
+        periodic_boundary: bool
+            See superclass
 
         Attributes
         -------
@@ -1948,8 +2009,8 @@ class FromFile(Interped):
             self.id = file_name
             xx, yy = np.genfromtxt(self.id).T
             Interped.__init__(self, xx=xx, yy=yy, minimum=minimum,
-                              maximum=maximum, name=name,
-                              latex_label=latex_label, unit=unit)
+                              maximum=maximum, name=name, latex_label=latex_label,
+                              unit=unit, periodic_boundary=periodic_boundary)
         except IOError:
             logger.warning("Can't load {}.".format(self.id))
             logger.warning("Format should be:")
diff --git a/bilby/core/sampler/__init__.py b/bilby/core/sampler/__init__.py
index 028c5f5aa..7feed4e80 100644
--- a/bilby/core/sampler/__init__.py
+++ b/bilby/core/sampler/__init__.py
@@ -17,6 +17,7 @@ from .ptmcmc import PTMCMCSampler
 from .pymc3 import Pymc3
 from .pymultinest import Pymultinest
 from .fake_sampler import FakeSampler
+from . import proposal
 
 IMPLEMENTED_SAMPLERS = {
     'cpnest': Cpnest, 'dynesty': Dynesty, 'emcee': Emcee, 'nestle': Nestle,
@@ -89,7 +90,7 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
         If true, save the priors and results to disk.
         If hdf5, save as an hdf5 file instead of json.
     gzip: bool
-        If true, and save is true, gzip the saved results file. 
+        If true, and save is true, gzip the saved results file.
     result_class: bilby.core.result.Result, or child of
         The result class to use. By default, `bilby.core.result.Result` is used,
         but objects which inherit from this class can be given providing
diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py
index eec05efc3..6acd33689 100644
--- a/bilby/core/sampler/cpnest.py
+++ b/bilby/core/sampler/cpnest.py
@@ -1,9 +1,12 @@
 from __future__ import absolute_import
 
+import copy
+
 import numpy as np
 from pandas import DataFrame
 
 from .base_sampler import NestedSampler
+from .proposal import Sample, JumpProposalCycle
 from ..utils import logger, check_directory_exists_and_if_not_mkdir
 
 
@@ -37,7 +40,7 @@ class Cpnest(NestedSampler):
     """
     default_kwargs = dict(verbose=1, nthreads=1, nlive=500, maxmcmc=1000,
                           seed=None, poolsize=100, nhamiltonian=0, resume=True,
-                          output=None)
+                          output=None, proposals=None)
 
     def _translate_kwargs(self, kwargs):
         if 'nlive' not in kwargs:
@@ -78,8 +81,19 @@ class Cpnest(NestedSampler):
                                  for name in self.names])
                 return point
 
+        self._resolve_proposal_functions()
         model = Model(self.search_parameter_keys, self.priors)
-        out = CPNest(model, **self.kwargs)
+        try:
+            out = CPNest(model, **self.kwargs)
+        except TypeError as e:
+            if 'proposals' in self.kwargs.keys():
+                logger.warning('YOU ARE TRYING TO USE PROPOSALS IN A VERSION OF CPNEST THAT DOES'
+                               'NOT ACCEPT CUSTOM PROPOSALS. SAMPLING WILL COMMENCE WITH THE DEFAULT'
+                               'PROPOSALS.')
+                del self.kwargs['proposals']
+                out = CPNest(model, **self.kwargs)
+            else:
+                raise TypeError(e)
         out.run()
 
         if self.plot:
@@ -103,3 +117,69 @@ class Cpnest(NestedSampler):
             self.kwargs['output'] = '{}/'.format(self.kwargs['output'])
         check_directory_exists_and_if_not_mkdir(self.kwargs['output'])
         NestedSampler._verify_kwargs_against_default_kwargs(self)
+
+    def _resolve_proposal_functions(self):
+        from cpnest.proposal import ProposalCycle
+        if 'proposals' in self.kwargs:
+            if self.kwargs['proposals'] is None:
+                return
+            if type(self.kwargs['proposals']) == JumpProposalCycle:
+                self.kwargs['proposals'] = dict(mhs=self.kwargs['proposals'], hmc=self.kwargs['proposals'])
+            for key, proposal in self.kwargs['proposals'].items():
+                if isinstance(proposal, JumpProposalCycle):
+                    self.kwargs['proposals'][key] = cpnest_proposal_cycle_factory(proposal)
+                elif isinstance(proposal, ProposalCycle):
+                    pass
+                else:
+                    raise TypeError("Unknown proposal type")
+
+
+def cpnest_proposal_factory(jump_proposal):
+    import cpnest.proposal
+
+    class CPNestEnsembleProposal(cpnest.proposal.EnsembleProposal):
+
+        def __init__(self, jp):
+            self.jump_proposal = jp
+            self.ensemble = None
+
+        def __call__(self, sample, **kwargs):
+            return self.get_sample(sample, **kwargs)
+
+        def get_sample(self, cpnest_sample, **kwargs):
+            sample = Sample.from_cpnest_live_point(cpnest_sample)
+            self.ensemble = kwargs.get('coordinates', self.ensemble)
+            sample = self.jump_proposal(sample=sample, sampler_name='cpnest', **kwargs)
+            self.log_J = self.jump_proposal.log_j
+            return self._update_cpnest_sample(cpnest_sample, sample)
+
+        @staticmethod
+        def _update_cpnest_sample(cpnest_sample, sample):
+            cpnest_sample.names = list(sample.keys())
+            for i, value in enumerate(sample.values()):
+                cpnest_sample.values[i] = value
+            return cpnest_sample
+
+    return CPNestEnsembleProposal(jump_proposal)
+
+
+def cpnest_proposal_cycle_factory(jump_proposals):
+    import cpnest.proposal
+
+    class CPNestProposalCycle(cpnest.proposal.ProposalCycle):
+        def __init__(self):
+            self.jump_proposals = copy.deepcopy(jump_proposals)
+            for i, prop in enumerate(self.jump_proposals.proposal_functions):
+                self.jump_proposals.proposal_functions[i] = cpnest_proposal_factory(prop)
+            self.jump_proposals.update_cycle()
+            super(CPNestProposalCycle, self).__init__(proposals=self.jump_proposals.proposal_functions,
+                                                      weights=self.jump_proposals.weights,
+                                                      cyclelength=self.jump_proposals.cycle_length)
+
+        def get_sample(self, old, **kwargs):
+            return self.jump_proposals(sample=old, coordinates=self.ensemble, **kwargs)
+
+        def set_ensemble(self, ensemble):
+            self.ensemble = ensemble
+
+    return CPNestProposalCycle
diff --git a/bilby/core/sampler/proposal.py b/bilby/core/sampler/proposal.py
new file mode 100644
index 000000000..a928292b3
--- /dev/null
+++ b/bilby/core/sampler/proposal.py
@@ -0,0 +1,339 @@
+from collections import OrderedDict
+from inspect import isclass
+
+import numpy as np
+import random
+
+from bilby.core.prior import Uniform
+
+
+class Sample(OrderedDict):
+
+    def __init__(self, dictionary=None):
+        if dictionary is None:
+            dictionary = dict()
+        super(Sample, self).__init__(dictionary)
+
+    def __add__(self, other):
+        return Sample({key: self[key] + other[key] for key in self.keys()})
+
+    def __sub__(self, other):
+        return Sample({key: self[key] - other[key] for key in self.keys()})
+
+    def __mul__(self, other):
+        return Sample({key: self[key] * other for key in self.keys()})
+
+    @classmethod
+    def from_cpnest_live_point(cls, cpnest_live_point):
+        res = cls(dict())
+        for i, key in enumerate(cpnest_live_point.names):
+            res[key] = cpnest_live_point.values[i]
+        return res
+
+    @classmethod
+    def from_external_type(cls, external_sample, sampler_name):
+        if sampler_name == 'cpnest':
+            return cls.from_cpnest_live_point(external_sample)
+        return external_sample
+
+
+class JumpProposal(object):
+
+    def __init__(self, priors=None):
+        """ A generic class for jump proposals
+
+        Parameters
+        ----------
+        priors: bilby.core.prior.PriorDict
+            Dictionary of priors used in this sampling run
+
+        Attributes
+        ----------
+        log_j: float
+            Log Jacobian of the proposal. Characterises whether or not detailed balance
+            is preserved. If not, log_j needs to be adjusted accordingly.
+        """
+        self.priors = priors
+        self.log_j = 0.0
+
+    def __call__(self, sample, **kwargs):
+        """ A generic wrapper for the jump proposal function
+
+        Parameters
+        ----------
+        args: Arguments that are going to be passed into the proposal function
+        kwargs: Keyword arguments that are going to be passed into the proposal function
+
+        Returns
+        -------
+        dict: A dictionary with the new samples. Boundary conditions are applied.
+
+        """
+        return self._apply_boundaries(sample)
+
+    def _move_reflecting_keys(self, sample):
+        keys = [key for key in sample.keys() if not self.priors[key].periodic_boundary]
+        for key in keys:
+            if sample[key] > self.priors[key].maximum or sample[key] < self.priors[key].minimum:
+                r = self.priors[key].maximum - self.priors[key].minimum
+                delta = (sample[key] - self.priors[key].minimum) % (2 * r)
+                if delta > r:
+                    sample[key] = 2 * self.priors[key].maximum - self.priors[key].minimum - delta
+                elif delta < r:
+                    sample[key] = self.priors[key].minimum + delta
+        return sample
+
+    def _move_periodic_keys(self, sample):
+        keys = [key for key in sample.keys() if self.priors[key].periodic_boundary]
+        for key in keys:
+            if sample[key] > self.priors[key].maximum or sample[key] < self.priors[key].minimum:
+                sample[key] = (self.priors[key].minimum +
+                               ((sample[key] - self.priors[key].minimum) %
+                                (self.priors[key].maximum - self.priors[key].minimum)))
+        return sample
+
+    def _apply_boundaries(self, sample):
+        sample = self._move_periodic_keys(sample)
+        sample = self._move_reflecting_keys(sample)
+        return sample
+
+
+class JumpProposalCycle(object):
+
+    def __init__(self, proposal_functions, weights, cycle_length=100):
+        """ A generic wrapper class for proposal cycles
+
+        Parameters
+        ----------
+        proposal_functions: list
+            A list of callable proposal functions/objects
+        weights: list
+            A list of integer weights for the respective proposal functions
+        cycle_length: int, optional
+            Length of the proposal cycle
+        """
+        self.proposal_functions = proposal_functions
+        self.weights = weights
+        self.cycle_length = cycle_length
+        self._index = 0
+        self._cycle = np.array([])
+        self.update_cycle()
+
+    def __call__(self, **kwargs):
+        proposal = self._cycle[self.index]
+        self._index = (self.index + 1) % self.cycle_length
+        return proposal(**kwargs)
+
+    def __len__(self):
+        return len(self.proposal_functions)
+
+    def update_cycle(self):
+        self._cycle = np.random.choice(self.proposal_functions, size=self.cycle_length,
+                                       p=self.weights, replace=True)
+
+    @property
+    def proposal_functions(self):
+        return self._proposal_functions
+
+    @proposal_functions.setter
+    def proposal_functions(self, proposal_functions):
+        for i, proposal in enumerate(proposal_functions):
+            if isclass(proposal):
+                proposal_functions[i] = proposal()
+        self._proposal_functions = proposal_functions
+
+    @property
+    def index(self):
+        return self._index
+
+    @property
+    def weights(self):
+        """
+
+        Returns
+        -------
+        Normalised proposal weights
+
+        """
+        return np.array(self._weights) / np.sum(np.array(self._weights))
+
+    @weights.setter
+    def weights(self, weights):
+        assert len(weights) == len(self.proposal_functions)
+        self._weights = weights
+
+    @property
+    def unnormalised_weights(self):
+        return self._weights
+
+
+class NormJump(JumpProposal):
+    def __init__(self, step_size, priors=None):
+        """
+        A normal distributed step centered around the old sample
+
+        Parameters
+        ----------
+        step_size: float
+            The scalable step size
+        priors:
+            See superclass
+        """
+        super(NormJump, self).__init__(priors)
+        self.step_size = step_size
+
+    def __call__(self, sample, **kwargs):
+        for key in sample.keys():
+            sample[key] = np.random.normal(sample[key], self.step_size)
+        return super(NormJump, self).__call__(sample)
+
+
+class EnsembleWalk(JumpProposal):
+
+    def __init__(self, random_number_generator=random.random, n_points=3, priors=None,
+                 **random_number_generator_args):
+        """
+        An ensemble walk
+        Parameters
+        ----------
+        random_number_generator: func, optional
+            A random number generator. Default is random.random
+        n_points: int, optional
+            Number of points in the ensemble to average over. Default is 3.
+        priors:
+            See superclass
+        random_number_generator_args:
+            Additional keyword arguments for the random number generator
+        """
+        super(EnsembleWalk, self).__init__(priors)
+        self.random_number_generator = random_number_generator
+        self.n_points = n_points
+        self.random_number_generator_args = random_number_generator_args
+
+    def __call__(self, sample, **kwargs):
+        subset = random.sample(kwargs['coordinates'], self.n_points)
+        for i in range(len(subset)):
+            subset[i] = Sample.from_external_type(subset[i], kwargs.get('sampler_name', None))
+        center_of_mass = self.get_center_of_mass(subset)
+        for x in subset:
+            sample += (x - center_of_mass) * self.random_number_generator(**self.random_number_generator_args)
+        return super(EnsembleWalk, self).__call__(sample)
+
+    @staticmethod
+    def get_center_of_mass(subset):
+        return {key: np.mean([c[key] for c in subset]) for key in subset[0].keys()}
+
+
+class EnsembleStretch(JumpProposal):
+
+    def __init__(self, scale=2.0, priors=None):
+        """
+        Stretch move. Calculates the log Jacobian which can be used in cpnest to bias future moves.
+
+        Parameters
+        ----------
+        scale: float, optional
+            Stretching scale. Default is 2.0.
+        """
+        super(EnsembleStretch, self).__init__(priors)
+        self.scale = scale
+
+    def __call__(self, sample, **kwargs):
+        second_sample = random.choice(kwargs['coordinates'])
+        second_sample = Sample.from_external_type(second_sample, kwargs.get('sampler_name', None))
+        step = random.uniform(-1, 1) * np.log(self.scale)
+        sample = second_sample + (sample - second_sample) * np.exp(step)
+        self.log_j = len(sample) * step
+        return super(EnsembleStretch, self).__call__(sample)
+
+
+class DifferentialEvolution(JumpProposal):
+
+    def __init__(self, sigma=1e-4, mu=1.0, priors=None):
+        """
+        Differential evolution step. Takes two elements from the existing coordinates and differentially evolves the
+        old sample based on them using some Gaussian randomisation in the step.
+
+        Parameters
+        ----------
+        sigma: float, optional
+            Random spread in the evolution step. Default is 1e-4
+        mu: float, optional
+            Scale of the randomization. Default is 1.0
+        """
+        super(DifferentialEvolution, self).__init__(priors)
+        self.sigma = sigma
+        self.mu = mu
+
+    def __call__(self, sample, **kwargs):
+        a, b = random.sample(kwargs['coordinates'], 2)
+        sample = sample + (b - a) * random.gauss(self.mu, self.sigma)
+        return super(DifferentialEvolution, self).__call__(sample)
+
+
+class EnsembleEigenVector(JumpProposal):
+
+    def __init__(self, priors=None):
+        """
+        Ensemble step based on the ensemble eigenvectors.
+
+        Parameters
+        ----------
+        priors:
+            See superclass
+        """
+        super(EnsembleEigenVector, self).__init__(priors)
+        self.eigen_values = None
+        self.eigen_vectors = None
+        self.covariance = None
+
+    def update_eigenvectors(self, coordinates):
+        if coordinates is None:
+            return
+        elif len(coordinates[0]) == 1:
+            self._set_1_d_eigenvectors(coordinates)
+        else:
+            self._set_n_d_eigenvectors(coordinates)
+
+    def _set_1_d_eigenvectors(self, coordinates):
+        n_samples = len(coordinates)
+        key = list(coordinates[0].keys())[0]
+        variance = np.var([coordinates[j][key] for j in range(n_samples)])
+        self.eigen_values = np.atleast_1d(variance)
+        self.covariance = self.eigen_values
+        self.eigen_vectors = np.eye(1)
+
+    def _set_n_d_eigenvectors(self, coordinates):
+        n_samples = len(coordinates)
+        dim = len(coordinates[0])
+        cov_array = np.zeros((dim, n_samples))
+        for i, key in enumerate(coordinates[0].keys()):
+            for j in range(n_samples):
+                cov_array[i, j] = coordinates[j][key]
+        self.covariance = np.cov(cov_array)
+        self.eigen_values, self.eigen_vectors = np.linalg.eigh(self.covariance)
+
+    def __call__(self, sample, **kwargs):
+        self.update_eigenvectors(kwargs['coordinates'])
+        i = random.randrange(len(sample))
+        jump_size = np.sqrt(np.fabs(self.eigen_values[i])) * random.gauss(0, 1)
+        for j, key in enumerate(sample.keys()):
+            sample[key] += jump_size * self.eigen_vectors[j, i]
+        return super(EnsembleEigenVector, self).__call__(sample)
+
+
+class DrawFlatPrior(JumpProposal):
+    """
+    Draws a proposal from the flattened prior distribution.
+    """
+
+    def __call__(self, sample, **kwargs):
+        sample = _draw_from_flat_priors(sample, self.priors)
+        return super(DrawFlatPrior, self).__call__(sample)
+
+
+def _draw_from_flat_priors(sample, priors):
+    for key in sample.keys():
+        flat_prior = Uniform(priors[key].minimum, priors[key].maximum, priors[key].name)
+        sample[key] = flat_prior.sample()
+    return sample
diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py
index 58790e41c..c751303d2 100644
--- a/bilby/gw/prior.py
+++ b/bilby/gw/prior.py
@@ -31,7 +31,7 @@ class Cosmological(Interped):
                 name='comoving_distance', latex_label='$d_C$', unit=units.Mpc))
 
     def __init__(self, minimum, maximum, cosmology=None, name=None,
-                 latex_label=None, unit=None):
+                 latex_label=None, unit=None, periodic_boundary=False):
         self.cosmology = get_cosmology(cosmology)
         if name not in self._default_args_dict:
             raise ValueError(
@@ -59,7 +59,7 @@ class Cosmological(Interped):
         else:
             raise ValueError('Name {} not recognized.'.format(name))
         Interped.__init__(self, xx=xx, yy=yy, minimum=minimum, maximum=maximum,
-                          **label_args)
+                          periodic_boundary=periodic_boundary, **label_args)
 
     @property
     def minimum(self):
@@ -162,7 +162,7 @@ class UniformComovingVolume(Cosmological):
 class AlignedSpin(Interped):
 
     def __init__(self, a_prior=Uniform(0, 1), z_prior=Uniform(-1, 1),
-                 name=None, latex_label=None, unit=None):
+                 name=None, latex_label=None, unit=None, periodic_boundary=False):
         """
         Prior distribution for the aligned (z) component of the spin.
 
@@ -193,7 +193,8 @@ class AlignedSpin(Interped):
         yy = [np.trapz(np.nan_to_num(a_prior.prob(aas) / aas *
                                      z_prior.prob(x / aas)), aas) for x in xx]
         Interped.__init__(self, xx=xx, yy=yy, name=name,
-                          latex_label=latex_label, unit=unit)
+                          latex_label=latex_label, unit=unit,
+                          periodic_boundary=periodic_boundary)
 
 
 class BBHPriorDict(PriorDict):
@@ -509,13 +510,15 @@ class CalibrationPriorDict(PriorDict):
             latex_label = "$A^{}_{}$".format(label, ii)
             prior[name] = Gaussian(mu=amplitude_mean_nodes[ii],
                                    sigma=amplitude_sigma_nodes[ii],
-                                   name=name, latex_label=latex_label)
+                                   name=name, latex_label=latex_label,
+                                   periodic_boundary=False)
         for ii in range(n_nodes):
             name = "recalib_{}_phase_{}".format(label, ii)
             latex_label = "$\\phi^{}_{}$".format(label, ii)
             prior[name] = Gaussian(mu=phase_mean_nodes[ii],
                                    sigma=phase_sigma_nodes[ii],
-                                   name=name, latex_label=latex_label)
+                                   name=name, latex_label=latex_label,
+                                   periodic_boundary=False)
         for ii in range(n_nodes):
             name = "recalib_{}_frequency_{}".format(label, ii)
             latex_label = "$f^{}_{}$".format(label, ii)
@@ -568,13 +571,15 @@ class CalibrationPriorDict(PriorDict):
             latex_label = "$A^{}_{}$".format(label, ii)
             prior[name] = Gaussian(mu=amplitude_mean_nodes[ii],
                                    sigma=amplitude_sigma_nodes[ii],
-                                   name=name, latex_label=latex_label)
+                                   name=name, latex_label=latex_label,
+                                   periodic_boundary=False)
         for ii in range(n_nodes):
             name = "recalib_{}_phase_{}".format(label, ii)
             latex_label = "$\\phi^{}_{}$".format(label, ii)
             prior[name] = Gaussian(mu=phase_mean_nodes[ii],
                                    sigma=phase_sigma_nodes[ii],
-                                   name=name, latex_label=latex_label)
+                                   name=name, latex_label=latex_label,
+                                   periodic_boundary=False)
         for ii in range(n_nodes):
             name = "recalib_{}_frequency_{}".format(label, ii)
             latex_label = "$f^{}_{}$".format(label, ii)
diff --git a/bilby/gw/prior_files/GW150914.prior b/bilby/gw/prior_files/GW150914.prior
index 410fc9276..9641b77d9 100644
--- a/bilby/gw/prior_files/GW150914.prior
+++ b/bilby/gw/prior_files/GW150914.prior
@@ -1,20 +1,20 @@
 # These are the default priors for analysing GW150914.
-mass_1 = Uniform(name='mass_1', minimum=30, maximum=50, unit='$M_{\\odot}$')
-mass_2 = Uniform(name='mass_2', minimum=20, maximum=40, unit='$M_{\\odot}$')
-mass_ratio =  Constraint(name='mass_ratio', minimum=0.125, maximum=1)
-a_1 =  Uniform(name='a_1', minimum=0, maximum=0.8)
-a_2 =  Uniform(name='a_2', minimum=0, maximum=0.8)
-tilt_1 =  Sine(name='tilt_1')
-tilt_2 =  Sine(name='tilt_2')
-phi_12 =  Uniform(name='phi_12', minimum=0, maximum=2 * np.pi)
-phi_jl =  Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi)
-luminosity_distance =  bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=1e3, unit='Mpc')
-dec =  Cosine(name='dec')
-ra =  Uniform(name='ra', minimum=0, maximum=2 * np.pi)
-theta_jn =  Sine(name='theta_jn')
-psi =  Uniform(name='psi', minimum=0, maximum=np.pi)
-phase =  Uniform(name='phase', minimum=0, maximum=2 * np.pi)
-geocent_time = Uniform(1126259462.322, 1126259462.522, name='geocent_time', unit='$s$')
+mass_1 = Uniform(name='mass_1', minimum=30, maximum=50, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_2 = Uniform(name='mass_2', minimum=20, maximum=40, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_ratio = Constraint(name='mass_ratio', minimum=0.125, maximum=1)
+a_1 = Uniform(name='a_1', minimum=0, maximum=0.8, periodic_boundary=False)
+a_2 = Uniform(name='a_2', minimum=0, maximum=0.8, periodic_boundary=False)
+tilt_1 = Sine(name='tilt_1', periodic_boundary=False)
+tilt_2 = Sine(name='tilt_2', periodic_boundary=False)
+phi_12 = Uniform(name='phi_12', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+phi_jl = Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=1e3, unit='Mpc', periodic_boundary=False)
+dec = Cosine(name='dec', periodic_boundary=False)
+ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+theta_jn = Sine(name='theta_jn', periodic_boundary=False)
+psi = Uniform(name='psi', minimum=0, maximum=np.pi, periodic_boundary=True)
+phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+geocent_time = Uniform(1126259462.322, 1126259462.522, name='geocent_time', unit='$s$', periodic_boundary=False)
 # These are the calibration parameters as described in
 # https://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.041015
 # recalib_H1_frequency_0 = 20
diff --git a/bilby/gw/prior_files/aligned_spin_binary_black_holes.prior b/bilby/gw/prior_files/aligned_spin_binary_black_holes.prior
index ca49a506b..8be6dcd1e 100644
--- a/bilby/gw/prior_files/aligned_spin_binary_black_holes.prior
+++ b/bilby/gw/prior_files/aligned_spin_binary_black_holes.prior
@@ -2,19 +2,19 @@
 # Note that you may wish to use more specific mass and distance parameters.
 # These commands are all known to bilby.gw.prior.
 # Lines beginning "#" are ignored.
-mass_1 = Uniform(name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$')
-mass_2 = Uniform(name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$')
-mass_ratio =  Constraint(name='mass_ratio', minimum=0.125, maximum=1)
-# chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$')
-# total_mass =  Uniform(name='total_mass', minimum=10, maximum=200, unit='$M_{\\odot}$')
-# mass_ratio =  Uniform(name='mass_ratio', minimum=0.125, maximum=1)
-# symmetric_mass_ratio =  Uniform(name='symmetric_mass_ratio', minimum=8 / 81, maximum=0.25)
-chi_1 =  bilby.gw.prior.AlignedSpin(name='chi_1', a_prior=Uniform(minimum=0, maximum=0.8))
-chi_2 =  bilby.gw.prior.AlignedSpin(name='chi_2', a_prior=Uniform(minimum=0, maximum=0.8))
-luminosity_distance =  bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc')
-dec =  Cosine(name='dec')
-ra =  Uniform(name='ra', minimum=0, maximum=2 * np.pi)
-theta_jn =  Sine(name='theta_jn')
-# cos_theta_jn =  Uniform(name='cos_theta_jn', minimum=-1, maximum=1)
-psi =  Uniform(name='psi', minimum=0, maximum=np.pi)
-phase =  Uniform(name='phase', minimum=0, maximum=2 * np.pi)
+mass_1 = Uniform(name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_2 = Uniform(name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_ratio = Constraint(name='mass_ratio', minimum=0.125, maximum=1)
+# chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+# total_mass = Uniform(name='total_mass', minimum=10, maximum=200, unit='$M_{\\odot}$', periodic_boundary=False)
+# mass_ratio = Uniform(name='mass_ratio', minimum=0.125, maximum=1, periodic_boundary=False)
+# symmetric_mass_ratio =  Uniform(name='symmetric_mass_ratio', minimum=8 / 81, maximum=0.25, periodic_boundary=False)
+chi_1 = bilby.gw.prior.AlignedSpin(name='chi_1', a_prior=Uniform(minimum=0, maximum=0.8), periodic_boundary=False)
+chi_2 = bilby.gw.prior.AlignedSpin(name='chi_2', a_prior=Uniform(minimum=0, maximum=0.8), periodic_boundary=False)
+luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc', periodic_boundary=False)
+dec = Cosine(name='dec', periodic_boundary=False)
+ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+theta_jn = Sine(name='theta_jn', periodic_boundary=False)
+# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1, periodic_boundary=False)
+psi = Uniform(name='psi', minimum=0, maximum=np.pi, periodic_boundary=True)
+phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
diff --git a/bilby/gw/prior_files/binary_black_holes.prior b/bilby/gw/prior_files/binary_black_holes.prior
index e79bd5baa..6df97a1dd 100644
--- a/bilby/gw/prior_files/binary_black_holes.prior
+++ b/bilby/gw/prior_files/binary_black_holes.prior
@@ -2,25 +2,25 @@
 # Note that you may wish to use more specific mass and distance parameters.
 # These commands are all known to bilby.gw.prior.
 # Lines beginning "#" are ignored.
-mass_1 = Uniform(name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$')
-mass_2 = Uniform(name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$')
-mass_ratio =  Constraint(name='mass_ratio', minimum=0.125, maximum=1)
-# chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$')
-# total_mass =  Uniform(name='total_mass', minimum=10, maximum=200, unit='$M_{\\odot}$')
-# mass_ratio =  Uniform(name='mass_ratio', minimum=0.125, maximum=1)
-# symmetric_mass_ratio =  Uniform(name='symmetric_mass_ratio', minimum=8 / 81, maximum=0.25)
-a_1 =  Uniform(name='a_1', minimum=0, maximum=0.8)
-a_2 =  Uniform(name='a_2', minimum=0, maximum=0.8)
-tilt_1 =  Sine(name='tilt_1')
-tilt_2 =  Sine(name='tilt_2')
-# cos_tilt_1 =  Uniform(name='cos_tilt_1', minimum=-1, maximum=1)
-# cos_tilt_2 =  Uniform(name='cos_tilt_2', minimum=-1, maximum=1)
-phi_12 =  Uniform(name='phi_12', minimum=0, maximum=2 * np.pi)
-phi_jl =  Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi)
-luminosity_distance =  bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc')
-dec =  Cosine(name='dec')
-ra =  Uniform(name='ra', minimum=0, maximum=2 * np.pi)
-theta_jn =  Sine(name='theta_jn')
-# cos_theta_jn =  Uniform(name='cos_theta_jn', minimum=-1, maximum=1)
-psi =  Uniform(name='psi', minimum=0, maximum=np.pi)
-phase =  Uniform(name='phase', minimum=0, maximum=2 * np.pi)
+mass_1 = Uniform(name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_2 = Uniform(name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_ratio = Constraint(name='mass_ratio', minimum=0.125, maximum=1)
+# chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+# total_mass = Uniform(name='total_mass', minimum=10, maximum=200, unit='$M_{\\odot}$', periodic_boundary=False)
+# mass_ratio = Uniform(name='mass_ratio', minimum=0.125, maximum=1, periodic_boundary=False)
+# symmetric_mass_ratio = Uniform(name='symmetric_mass_ratio', minimum=8 / 81, maximum=0.25, periodic_boundary=False)
+a_1 = Uniform(name='a_1', minimum=0, maximum=0.8, periodic_boundary=False)
+a_2 = Uniform(name='a_2', minimum=0, maximum=0.8, periodic_boundary=False)
+tilt_1 = Sine(name='tilt_1', periodic_boundary=False)
+tilt_2 = Sine(name='tilt_2', periodic_boundary=False)
+# cos_tilt_1 = Uniform(name='cos_tilt_1', minimum=-1, maximum=1, periodic_boundary=False)
+# cos_tilt_2 = Uniform(name='cos_tilt_2', minimum=-1, maximum=1, periodic_boundary=False)
+phi_12 = Uniform(name='phi_12', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+phi_jl = Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc', periodic_boundary=False)
+dec = Cosine(name='dec', periodic_boundary=False)
+ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+theta_jn = Sine(name='theta_jn', periodic_boundary=False)
+# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1, periodic_boundary=False)
+psi = Uniform(name='psi', minimum=0, maximum=np.pi, periodic_boundary=True)
+phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
diff --git a/bilby/gw/prior_files/binary_neutron_stars.prior b/bilby/gw/prior_files/binary_neutron_stars.prior
index eff1a2f2a..09acbdd14 100644
--- a/bilby/gw/prior_files/binary_neutron_stars.prior
+++ b/bilby/gw/prior_files/binary_neutron_stars.prior
@@ -2,23 +2,23 @@
 # Note that you may wish to use more specific mass and distance parameters.
 # These commands are all known to bilby.gw.prior.
 # Lines beginning "#" are ignored.
-mass_1 = Uniform(name='mass_1', minimum=1, maximum=2, unit='$M_{\\odot}$')
-mass_2 = Uniform(name='mass_2', minimum=1, maximum=2, unit='$M_{\\odot}$')
-mass_ratio =  Constraint(name='mass_ratio', minimum=0.125, maximum=1)
-# chirp_mass = Uniform(name='chirp_mass', minimum=0.87, maximum=1.74, unit='$M_{\\odot}$')
-# total_mass =  Uniform(name='total_mass', minimum=2, maximum=4, unit='$M_{\\odot}$')
-# mass_ratio =  Uniform(name='mass_ratio', minimum=0.5, maximum=1)
-# symmetric_mass_ratio =  Uniform(name='symmetric_mass_ratio', minimum=0.22, maximum=0.25)
-chi_1 =  bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_1', latex_label='$\\chi_1$')
-chi_2 =  bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_2', latex_label='$\\chi_2$')
-luminosity_distance =  bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=10, maximum=500, unit='Mpc')
-dec =  Cosine(name='dec')
-ra =  Uniform(name='ra', minimum=0, maximum=2 * np.pi)
-theta_jn =  Sine(name='theta_jn')
-# cos_theta_jn =  Uniform(name='cos_theta_jn', minimum=-1, maximum=1)
-psi =  Uniform(name='psi', minimum=0, maximum=np.pi)
-phase =  Uniform(name='phase', minimum=0, maximum=2 * np.pi)
-lambda_1 = Uniform(name='lambda_1', minimum=0, maximum=3000 )
-lambda_2 = Uniform(name='lambda_2', minimum=0, maximum=3000 )
-# lambda_tilde = Uniform(name='lambda_tilde', minimum=0, maximum=5000)
-# delta_lambda = Uniform(name='delta_lambda', minimum=-5000, maximum=5000)
+mass_1 = Uniform(name='mass_1', minimum=1, maximum=2, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_2 = Uniform(name='mass_2', minimum=1, maximum=2, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_ratio = Constraint(name='mass_ratio', minimum=0.125, maximum=1)
+# chirp_mass = Uniform(name='chirp_mass', minimum=0.87, maximum=1.74, unit='$M_{\\odot}$', periodic_boundary=False)
+# total_mass = Uniform(name='total_mass', minimum=2, maximum=4, unit='$M_{\\odot}$', periodic_boundary=False)
+# mass_ratio = Uniform(name='mass_ratio', minimum=0.5, maximum=1, periodic_boundary=False)
+# symmetric_mass_ratio = Uniform(name='symmetric_mass_ratio', minimum=0.22, maximum=0.25, periodic_boundary=False)
+chi_1 = bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_1', latex_label='$\\chi_1$', periodic_boundary=False)
+chi_2 = bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_2', latex_label='$\\chi_2$', periodic_boundary=False)
+luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=10, maximum=500, unit='Mpc', periodic_boundary=False)
+dec = Cosine(name='dec', periodic_boundary=False)
+ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+theta_jn = Sine(name='theta_jn', periodic_boundary=False)
+# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1, periodic_boundary=False)
+psi = Uniform(name='psi', minimum=0, maximum=np.pi, periodic_boundary=True)
+phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+lambda_1 = Uniform(name='lambda_1', minimum=0, maximum=3000, periodic_boundary=False)
+lambda_2 = Uniform(name='lambda_2', minimum=0, maximum=3000, periodic_boundary=False)
+# lambda_tilde = Uniform(name='lambda_tilde', minimum=0, maximum=5000, periodic_boundary=False)
+# delta_lambda = Uniform(name='delta_lambda', minimum=-5000, maximum=5000, periodic_boundary=False)
diff --git a/bilby/gw/sampler/__init__.py b/bilby/gw/sampler/__init__.py
new file mode 100644
index 000000000..25ad2ca38
--- /dev/null
+++ b/bilby/gw/sampler/__init__.py
@@ -0,0 +1,2 @@
+from __future__ import absolute_import
+from . import proposal
diff --git a/bilby/gw/sampler/proposal.py b/bilby/gw/sampler/proposal.py
new file mode 100644
index 000000000..328fd98a8
--- /dev/null
+++ b/bilby/gw/sampler/proposal.py
@@ -0,0 +1,49 @@
+import random
+
+import numpy as np
+
+from bilby.core.sampler.proposal import JumpProposal
+
+
+class SkyLocationWanderJump(JumpProposal):
+    """
+    Jump proposal for wandering over the sky location. Does a Gaussian step in
+    RA and DEC depending on the temperature.
+    """
+
+    def __call__(self, sample, **kwargs):
+        temperature = 1 / kwargs.get('inverse_temperature', 1.0)
+        sigma = np.sqrt(temperature) / 2 / np.pi
+        sample['ra'] += random.gauss(0, sigma)
+        sample['dec'] += random.gauss(0, sigma)
+        return super(SkyLocationWanderJump, self).__call__(sample)
+
+
+class CorrelatedPolarisationPhaseJump(JumpProposal):
+    """
+    Correlated polarisation/phase jump proposal. Jumps between degenerate phi/psi regions.
+    """
+
+    def __call__(self, sample, **kwargs):
+        alpha = sample['psi'] + sample['phase']
+        beta = sample['psi'] - sample['phase']
+
+        draw = random.random()
+        if draw < 0.5:
+            alpha = 3.0 * np.pi * random.random()
+        else:
+            beta = 3.0 * np.pi * random.random() - 2 * np.pi
+        sample['psi'] = (alpha + beta) * 0.5
+        sample['phase'] = (alpha - beta) * 0.5
+        return super(CorrelatedPolarisationPhaseJump, self).__call__(sample)
+
+
+class PolarisationPhaseJump(JumpProposal):
+    """
+    Correlated polarisation/phase jump proposal. Jumps between degenerate phi/psi regions.
+    """
+
+    def __call__(self, sample, **kwargs):
+        sample['phase'] += np.pi
+        sample['psi'] += np.pi / 2
+        return super(PolarisationPhaseJump, self).__call__(sample)
diff --git a/examples/injection_examples/custom_proposal_example.py b/examples/injection_examples/custom_proposal_example.py
new file mode 100644
index 000000000..8480dd361
--- /dev/null
+++ b/examples/injection_examples/custom_proposal_example.py
@@ -0,0 +1,68 @@
+#!/usr/bin/env python
+"""
+Tutorial for running cpnest with custom jump proposals.
+"""
+from __future__ import division, print_function
+
+import numpy as np
+import bilby.gw.sampler.proposal
+from bilby.core.sampler import proposal
+
+
+# The set up here is the same as in fast_tutorial.py. Look there for descriptive explanations.
+
+duration = 4.
+sampling_frequency = 2048.
+
+outdir = 'outdir'
+label = 'custom_jump_proposals'
+bilby.core.utils.setup_logger(outdir=outdir, label=label)
+
+np.random.seed(88170235)
+
+injection_parameters = dict(
+    mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0,
+    phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659,
+    phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108)
+waveform_arguments = dict(waveform_approximant='IMRPhenomPv2',
+                          reference_frequency=50., minimum_frequency=20.)
+waveform_generator = bilby.gw.WaveformGenerator(
+    duration=duration, sampling_frequency=sampling_frequency,
+    frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,
+    waveform_arguments=waveform_arguments)
+ifos = bilby.gw.detector.InterferometerList(['H1', 'L1'])
+ifos.set_strain_data_from_power_spectral_densities(
+    sampling_frequency=sampling_frequency, duration=duration,
+    start_time=injection_parameters['geocent_time'] - 3)
+ifos.inject_signal(waveform_generator=waveform_generator,
+                   parameters=injection_parameters)
+priors = bilby.gw.prior.BBHPriorDict()
+priors['geocent_time'] = bilby.core.prior.Uniform(
+    minimum=injection_parameters['geocent_time'] - 1,
+    maximum=injection_parameters['geocent_time'] + 1,
+    name='geocent_time', latex_label='$t_c$', unit='$s$')
+for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'geocent_time']:
+    priors[key] = injection_parameters[key]
+likelihood = bilby.gw.GravitationalWaveTransient(
+    interferometers=ifos, waveform_generator=waveform_generator)
+
+# Definition of the custom jump proposals. Define a JumpProposalCycle. The first argument is a list
+# of all allowed jump proposals. The second argument is a list of weights for the respective jump
+# proposal.
+
+jump_proposals = proposal.JumpProposalCycle(
+    [proposal.EnsembleWalk(priors=priors), proposal.EnsembleStretch(priors=priors),
+     proposal.DifferentialEvolution(priors=priors), proposal.EnsembleEigenVector(priors=priors),
+     bilby.gw.sampler.proposal.SkyLocationWanderJump(priors=priors), bilby.gw.sampler.proposal.CorrelatedPolarisationPhaseJump(priors=priors),
+     bilby.gw.sampler.proposal.PolarisationPhaseJump(priors=priors), proposal.DrawFlatPrior(priors=priors)],
+    weights=[2, 2, 5, 1, 1, 1, 1, 1])
+
+# Run cpnest with the proposals kwarg specified.
+# Make sure to have a version of cpnest installed that supports custom proposals.
+result = bilby.run_sampler(
+    likelihood=likelihood, priors=priors, sampler='cpnest', npoints=1000,
+    injection_parameters=injection_parameters, outdir=outdir, label=label,
+    proposals=jump_proposals)
+
+# Make a corner plot.
+result.plot_corner()
diff --git a/test/gw_prior_test.py b/test/gw_prior_test.py
index 893d4f3de..485341dbf 100644
--- a/test/gw_prior_test.py
+++ b/test/gw_prior_test.py
@@ -36,8 +36,10 @@ class TestBBHPriorDict(unittest.TestCase):
                       for key in default.keys()])
         names = all([self.bbh_prior_dict[key].name == default[key].name
                      for key in default.keys()])
+        boundaries = all([self.bbh_prior_dict[key].periodic_boundary is default[key].periodic_boundary
+                          for key in default.keys()])
 
-        self.assertTrue(all([minima, maxima, names]))
+        self.assertTrue(all([minima, maxima, names, boundaries]))
 
     def test_create_from_dict(self):
         new_dict = bilby.gw.prior.BBHPriorDict(dictionary=self.prior_dict)
@@ -135,8 +137,10 @@ class TestBNSPriorDict(unittest.TestCase):
                       for key in default.keys()])
         names = all([self.bns_prior_dict[key].name == default[key].name
                      for key in default.keys()])
+        boundaries = all([self.bns_prior_dict[key].periodic_boundary == default[key].periodic_boundary
+                          for key in default.keys()])
 
-        self.assertTrue(all([minima, maxima, names]))
+        self.assertTrue(all([minima, maxima, names, boundaries]))
 
     def test_create_from_dict(self):
         new_dict = bilby.gw.prior.BNSPriorDict(dictionary=self.prior_dict)
diff --git a/test/prior_files/binary_black_holes.prior b/test/prior_files/binary_black_holes.prior
index e79bd5baa..b9abc7a45 100644
--- a/test/prior_files/binary_black_holes.prior
+++ b/test/prior_files/binary_black_holes.prior
@@ -2,25 +2,25 @@
 # Note that you may wish to use more specific mass and distance parameters.
 # These commands are all known to bilby.gw.prior.
 # Lines beginning "#" are ignored.
-mass_1 = Uniform(name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$')
-mass_2 = Uniform(name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$')
-mass_ratio =  Constraint(name='mass_ratio', minimum=0.125, maximum=1)
-# chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$')
-# total_mass =  Uniform(name='total_mass', minimum=10, maximum=200, unit='$M_{\\odot}$')
-# mass_ratio =  Uniform(name='mass_ratio', minimum=0.125, maximum=1)
-# symmetric_mass_ratio =  Uniform(name='symmetric_mass_ratio', minimum=8 / 81, maximum=0.25)
-a_1 =  Uniform(name='a_1', minimum=0, maximum=0.8)
-a_2 =  Uniform(name='a_2', minimum=0, maximum=0.8)
-tilt_1 =  Sine(name='tilt_1')
-tilt_2 =  Sine(name='tilt_2')
-# cos_tilt_1 =  Uniform(name='cos_tilt_1', minimum=-1, maximum=1)
-# cos_tilt_2 =  Uniform(name='cos_tilt_2', minimum=-1, maximum=1)
-phi_12 =  Uniform(name='phi_12', minimum=0, maximum=2 * np.pi)
-phi_jl =  Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi)
-luminosity_distance =  bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc')
-dec =  Cosine(name='dec')
-ra =  Uniform(name='ra', minimum=0, maximum=2 * np.pi)
-theta_jn =  Sine(name='theta_jn')
-# cos_theta_jn =  Uniform(name='cos_theta_jn', minimum=-1, maximum=1)
-psi =  Uniform(name='psi', minimum=0, maximum=np.pi)
-phase =  Uniform(name='phase', minimum=0, maximum=2 * np.pi)
+mass_1 = Uniform(name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_2 = Uniform(name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_ratio = Constraint(name='mass_ratio', minimum=0.125, maximum=1)
+# chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False)
+# total_mass = Uniform(name='total_mass', minimum=10, maximum=200, unit='$M_{\\odot}$', periodic_boundary=False)
+# mass_ratio = Uniform(name='mass_ratio', minimum=0.125, maximum=1, periodic_boundary=False)
+# symmetric_mass_ratio =  Uniform(name='symmetric_mass_ratio', minimum=8 / 81, maximum=0.25, periodic_boundary=False)
+a_1 = Uniform(name='a_1', minimum=0, maximum=0.8, periodic_boundary=False)
+a_2 = Uniform(name='a_2', minimum=0, maximum=0.8, periodic_boundary=False)
+tilt_1 = Sine(name='tilt_1', periodic_boundary=False)
+tilt_2 = Sine(name='tilt_2', periodic_boundary=False)
+# cos_tilt_1 = Uniform(name='cos_tilt_1', minimum=-1, maximum=1, periodic_boundary=False)
+# cos_tilt_2 = Uniform(name='cos_tilt_2', minimum=-1, maximum=1, periodic_boundary=False)
+phi_12 = Uniform(name='phi_12', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+phi_jl = Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc', periodic_boundary=False)
+dec = Cosine(name='dec', periodic_boundary=False)
+ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+theta_jn = Sine(name='theta_jn', periodic_boundary=False)
+# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1, periodic_boundary=False)
+psi = Uniform(name='psi', minimum=0, maximum=np.pi, periodic_boundary=True)
+phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
diff --git a/test/prior_files/binary_neutron_stars.prior b/test/prior_files/binary_neutron_stars.prior
index eff1a2f2a..09acbdd14 100644
--- a/test/prior_files/binary_neutron_stars.prior
+++ b/test/prior_files/binary_neutron_stars.prior
@@ -2,23 +2,23 @@
 # Note that you may wish to use more specific mass and distance parameters.
 # These commands are all known to bilby.gw.prior.
 # Lines beginning "#" are ignored.
-mass_1 = Uniform(name='mass_1', minimum=1, maximum=2, unit='$M_{\\odot}$')
-mass_2 = Uniform(name='mass_2', minimum=1, maximum=2, unit='$M_{\\odot}$')
-mass_ratio =  Constraint(name='mass_ratio', minimum=0.125, maximum=1)
-# chirp_mass = Uniform(name='chirp_mass', minimum=0.87, maximum=1.74, unit='$M_{\\odot}$')
-# total_mass =  Uniform(name='total_mass', minimum=2, maximum=4, unit='$M_{\\odot}$')
-# mass_ratio =  Uniform(name='mass_ratio', minimum=0.5, maximum=1)
-# symmetric_mass_ratio =  Uniform(name='symmetric_mass_ratio', minimum=0.22, maximum=0.25)
-chi_1 =  bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_1', latex_label='$\\chi_1$')
-chi_2 =  bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_2', latex_label='$\\chi_2$')
-luminosity_distance =  bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=10, maximum=500, unit='Mpc')
-dec =  Cosine(name='dec')
-ra =  Uniform(name='ra', minimum=0, maximum=2 * np.pi)
-theta_jn =  Sine(name='theta_jn')
-# cos_theta_jn =  Uniform(name='cos_theta_jn', minimum=-1, maximum=1)
-psi =  Uniform(name='psi', minimum=0, maximum=np.pi)
-phase =  Uniform(name='phase', minimum=0, maximum=2 * np.pi)
-lambda_1 = Uniform(name='lambda_1', minimum=0, maximum=3000 )
-lambda_2 = Uniform(name='lambda_2', minimum=0, maximum=3000 )
-# lambda_tilde = Uniform(name='lambda_tilde', minimum=0, maximum=5000)
-# delta_lambda = Uniform(name='delta_lambda', minimum=-5000, maximum=5000)
+mass_1 = Uniform(name='mass_1', minimum=1, maximum=2, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_2 = Uniform(name='mass_2', minimum=1, maximum=2, unit='$M_{\\odot}$', periodic_boundary=False)
+mass_ratio = Constraint(name='mass_ratio', minimum=0.125, maximum=1)
+# chirp_mass = Uniform(name='chirp_mass', minimum=0.87, maximum=1.74, unit='$M_{\\odot}$', periodic_boundary=False)
+# total_mass = Uniform(name='total_mass', minimum=2, maximum=4, unit='$M_{\\odot}$', periodic_boundary=False)
+# mass_ratio = Uniform(name='mass_ratio', minimum=0.5, maximum=1, periodic_boundary=False)
+# symmetric_mass_ratio = Uniform(name='symmetric_mass_ratio', minimum=0.22, maximum=0.25, periodic_boundary=False)
+chi_1 = bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_1', latex_label='$\\chi_1$', periodic_boundary=False)
+chi_2 = bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_2', latex_label='$\\chi_2$', periodic_boundary=False)
+luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=10, maximum=500, unit='Mpc', periodic_boundary=False)
+dec = Cosine(name='dec', periodic_boundary=False)
+ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+theta_jn = Sine(name='theta_jn', periodic_boundary=False)
+# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1, periodic_boundary=False)
+psi = Uniform(name='psi', minimum=0, maximum=np.pi, periodic_boundary=True)
+phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+lambda_1 = Uniform(name='lambda_1', minimum=0, maximum=3000, periodic_boundary=False)
+lambda_2 = Uniform(name='lambda_2', minimum=0, maximum=3000, periodic_boundary=False)
+# lambda_tilde = Uniform(name='lambda_tilde', minimum=0, maximum=5000, periodic_boundary=False)
+# delta_lambda = Uniform(name='delta_lambda', minimum=-5000, maximum=5000, periodic_boundary=False)
diff --git a/test/prior_test.py b/test/prior_test.py
index 6a2afc750..de5e49fd8 100644
--- a/test/prior_test.py
+++ b/test/prior_test.py
@@ -35,8 +35,10 @@ class TestPriorInstantiationWithoutOptionalPriors(unittest.TestCase):
         self.assertIsNone(self.prior.rescale(1))
 
     def test_base_repr(self):
-        self.prior = bilby.core.prior.Prior(name='test_name', latex_label='test_label', minimum=0, maximum=1)
-        expected_string = "Prior(name='test_name', latex_label='test_label', unit=None, minimum=0, maximum=1)"
+        self.prior = bilby.core.prior.Prior(name='test_name', latex_label='test_label', minimum=0, maximum=1,
+                                            periodic_boundary=False)
+        expected_string = "Prior(name='test_name', latex_label='test_label', unit=None, minimum=0, maximum=1, " \
+                          "periodic_boundary=False)"
         self.assertEqual(expected_string, self.prior.__repr__())
 
     def test_base_prob(self):
@@ -60,6 +62,9 @@ class TestPriorInstantiationWithoutOptionalPriors(unittest.TestCase):
         self.assertFalse(self.prior.is_in_prior_range(val_below))
         self.assertFalse(self.prior.is_in_prior_range(val_above))
 
+    def test_periodic_boundary_is_false(self):
+        self.assertFalse(self.prior.periodic_boundary)
+
 
 class TestPriorName(unittest.TestCase):
 
@@ -105,7 +110,7 @@ class TestPriorIsFixed(unittest.TestCase):
         pass
 
     def tearDown(self):
-        pass
+        del self.prior
 
     def test_is_fixed_parent_class(self):
         self.prior = bilby.core.prior.Prior()
@@ -120,6 +125,23 @@ class TestPriorIsFixed(unittest.TestCase):
         self.assertFalse(self.prior.is_fixed)
 
 
+class TestPriorBoundary(unittest.TestCase):
+
+    def setUp(self):
+        self.prior = bilby.core.prior.Prior(periodic_boundary=False)
+
+    def tearDown(self):
+        del self.prior
+
+    def test_set_boundary_valid(self):
+        self.prior.periodic_boundary = True
+        self.assertTrue(self.prior.periodic_boundary)
+
+    def test_set_boundary_invalid(self):
+        with self.assertRaises(ValueError):
+            self.prior.periodic_boundary = 'else'
+
+
 class TestPriorClasses(unittest.TestCase):
 
     def setUp(self):
@@ -153,7 +175,6 @@ class TestPriorClasses(unittest.TestCase):
             bilby.core.prior.Lorentzian(name='test', unit='unit', alpha=0, beta=1),
             bilby.core.prior.Gamma(name='test', unit='unit', k=1, theta=1),
             bilby.core.prior.ChiSquared(name='test', unit='unit', nu=2),
-            bilby.core.prior.FermiDirac(name='test', unit='unit', sigma=1., r=10.),
             bilby.gw.prior.AlignedSpin(name='test', unit='unit'),
         ]
 
@@ -357,8 +378,9 @@ class TestPriorClasses(unittest.TestCase):
 class TestPriorDict(unittest.TestCase):
 
     def setUp(self):
-        self.first_prior = bilby.core.prior.Uniform(name='a', minimum=0, maximum=1, unit='kg')
-        self.second_prior = bilby.core.prior.PowerLaw(name='b', alpha=3, minimum=1, maximum=2, unit='m/s')
+        self.first_prior = bilby.core.prior.Uniform(name='a', minimum=0, maximum=1, unit='kg', periodic_boundary=False)
+        self.second_prior = bilby.core.prior.PowerLaw(name='b', alpha=3, minimum=1, maximum=2, unit='m/s',
+                                                      periodic_boundary=False)
         self.third_prior = bilby.core.prior.DeltaFunction(name='c', peak=42, unit='m')
         self.priors = dict(mass=self.first_prior,
                            speed=self.second_prior,
@@ -398,43 +420,46 @@ class TestPriorDict(unittest.TestCase):
     def test_read_from_file(self):
         expected = dict(
             mass_1=bilby.core.prior.Uniform(
-                name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$'),
+                name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False),
             mass_2=bilby.core.prior.Uniform(
-                name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$'),
-            mass_ratio=bilby.core.prior.Constraint(
-                name='mass_ratio', minimum=0.125, maximum=1.0),
-            a_1=bilby.core.prior.Uniform(name='a_1', minimum=0, maximum=0.8),
-            a_2=bilby.core.prior.Uniform(name='a_2', minimum=0, maximum=0.8),
-            tilt_1=bilby.core.prior.Sine(name='tilt_1'),
-            tilt_2=bilby.core.prior.Sine(name='tilt_2'),
+                name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False),
+            mass_ratio=bilby.core.prior.Constraint(name='mass_ratio', minimum=0.125, maximum=1, latex_label='$q$',
+                                                   unit=None),
+            a_1=bilby.core.prior.Uniform(name='a_1', minimum=0, maximum=0.8, periodic_boundary=False),
+            a_2=bilby.core.prior.Uniform(name='a_2', minimum=0, maximum=0.8, periodic_boundary=False),
+            tilt_1=bilby.core.prior.Sine(name='tilt_1', periodic_boundary=False),
+            tilt_2=bilby.core.prior.Sine(name='tilt_2', periodic_boundary=False),
             phi_12=bilby.core.prior.Uniform(
-                name='phi_12', minimum=0, maximum=2 * np.pi),
+                name='phi_12', minimum=0, maximum=2 * np.pi, periodic_boundary=True),
             phi_jl=bilby.core.prior.Uniform(
-                name='phi_jl', minimum=0, maximum=2 * np.pi),
+                name='phi_jl', minimum=0, maximum=2 * np.pi, periodic_boundary=True),
             luminosity_distance=bilby.gw.prior.UniformComovingVolume(
                 name='luminosity_distance', minimum=1e2,
-                maximum=5e3, unit='Mpc'),
-            dec=bilby.core.prior.Cosine(name='dec'),
+                maximum=5e3, unit='Mpc', periodic_boundary=False),
+            dec=bilby.core.prior.Cosine(name='dec', periodic_boundary=False),
             ra=bilby.core.prior.Uniform(
-                name='ra', minimum=0, maximum=2 * np.pi),
-            theta_jn=bilby.core.prior.Sine(name='theta_jn'),
-            psi=bilby.core.prior.Uniform(name='psi', minimum=0, maximum=np.pi),
+                name='ra', minimum=0, maximum=2 * np.pi, periodic_boundary=True),
+            theta_jn=bilby.core.prior.Sine(name='theta_jn', periodic_boundary=False),
+            psi=bilby.core.prior.Uniform(name='psi', minimum=0, maximum=np.pi, periodic_boundary=True),
             phase=bilby.core.prior.Uniform(
-                name='phase', minimum=0, maximum=2 * np.pi)
+                name='phase', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
             )
         self.assertDictEqual(expected, self.prior_set_from_file)
 
     def test_to_file(self):
         expected = ["length = DeltaFunction(peak=42, name='c', latex_label='c', unit='m')\n",
-                    "speed = PowerLaw(alpha=3, minimum=1, maximum=2, name='b', latex_label='b', unit='m/s')\n",
-                    "mass = Uniform(minimum=0, maximum=1, name='a', latex_label='a', unit='kg')\n"]
+                    "speed = PowerLaw(alpha=3, minimum=1, maximum=2, name='b', latex_label='b', "
+                    "unit='m/s', periodic_boundary=False)\n",
+                    "mass = Uniform(minimum=0, maximum=1, name='a', latex_label='a', "
+                    "unit='kg', periodic_boundary=False)\n"]
         self.prior_set_from_dict.to_file(outdir='prior_files', label='to_file_test')
         with open('prior_files/to_file_test.prior') as f:
             for i, line in enumerate(f.readlines()):
                 self.assertTrue(line in expected)
 
     def test_from_dict_with_string(self):
-        string_prior = "bilby.core.prior.PowerLaw(name='b', alpha=3, minimum=1, maximum=2, unit='m/s')"
+        string_prior = "bilby.core.prior.PowerLaw(name='b', alpha=3, minimum=1, maximum=2, unit='m/s', " \
+                       "periodic_boundary=False)"
         self.priors['speed'] = string_prior
         from_dict = bilby.core.prior.PriorDict(dictionary=self.priors)
         self.assertDictEqual(self.prior_set_from_dict, from_dict)
@@ -444,8 +469,10 @@ class TestPriorDict(unittest.TestCase):
         self.prior_set_from_dict['e'] = 7.3
         self.prior_set_from_dict['f'] = 'unconvertable'
         self.prior_set_from_dict.convert_floats_to_delta_functions()
-        expected = dict(mass=bilby.core.prior.Uniform(name='a', minimum=0, maximum=1, unit='kg'),
-                        speed=bilby.core.prior.PowerLaw(name='b', alpha=3, minimum=1, maximum=2, unit='m/s'),
+        expected = dict(mass=bilby.core.prior.Uniform(name='a', minimum=0, maximum=1, unit='kg',
+                                                      periodic_boundary=False),
+                        speed=bilby.core.prior.PowerLaw(name='b', alpha=3, minimum=1, maximum=2, unit='m/s',
+                                                        periodic_boundary=False),
                         length=bilby.core.prior.DeltaFunction(name='c', peak=42, unit='m'),
                         d=bilby.core.prior.DeltaFunction(peak=5),
                         e=bilby.core.prior.DeltaFunction(peak=7.3),
@@ -454,33 +481,37 @@ class TestPriorDict(unittest.TestCase):
 
     def test_prior_set_from_dict_but_using_a_string(self):
         prior_set = bilby.core.prior.PriorDict(dictionary=self.default_prior_file)
-        expected = dict(
-            mass_1=bilby.core.prior.Uniform(
-                name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$'),
-            mass_2=bilby.core.prior.Uniform(
-                name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$'),
-            mass_ratio=bilby.core.prior.Constraint(
-                name='mass_ratio', minimum=0.125, maximum=1.0),
-            a_1=bilby.core.prior.Uniform(name='a_1', minimum=0, maximum=0.8),
-            a_2=bilby.core.prior.Uniform(name='a_2', minimum=0, maximum=0.8),
-            tilt_1=bilby.core.prior.Sine(name='tilt_1'),
-            tilt_2=bilby.core.prior.Sine(name='tilt_2'),
-            phi_12=bilby.core.prior.Uniform(
-                name='phi_12', minimum=0, maximum=2 * np.pi),
-            phi_jl=bilby.core.prior.Uniform(
-                name='phi_jl', minimum=0, maximum=2 * np.pi),
-            luminosity_distance=bilby.gw.prior.UniformComovingVolume(
-                name='luminosity_distance', minimum=1e2,
-                maximum=5e3, unit='Mpc'),
-            dec=bilby.core.prior.Cosine(name='dec'),
-            ra=bilby.core.prior.Uniform(
-                name='ra', minimum=0, maximum=2 * np.pi),
-            theta_jn=bilby.core.prior.Sine(name='theta_jn'),
-            psi=bilby.core.prior.Uniform(name='psi', minimum=0, maximum=np.pi),
-            phase=bilby.core.prior.Uniform(
-                name='phase', minimum=0, maximum=2 * np.pi)
+        expected = bilby.core.prior.PriorDict(
+            dict(
+                mass_1=bilby.core.prior.Uniform(
+                    name='mass_1', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False),
+                mass_2=bilby.core.prior.Uniform(
+                    name='mass_2', minimum=5, maximum=100, unit='$M_{\\odot}$', periodic_boundary=False),
+                mass_ratio=bilby.core.prior.Constraint(name='mass_ratio', minimum=0.125, maximum=1, latex_label='$q$',
+                                                       unit=None),
+                a_1=bilby.core.prior.Uniform(name='a_1', minimum=0, maximum=0.8, periodic_boundary=False),
+                a_2=bilby.core.prior.Uniform(name='a_2', minimum=0, maximum=0.8, periodic_boundary=False),
+                tilt_1=bilby.core.prior.Sine(name='tilt_1', periodic_boundary=False),
+                tilt_2=bilby.core.prior.Sine(name='tilt_2', periodic_boundary=False),
+                phi_12=bilby.core.prior.Uniform(
+                    name='phi_12', minimum=0, maximum=2 * np.pi, periodic_boundary=True),
+                phi_jl=bilby.core.prior.Uniform(
+                    name='phi_jl', minimum=0, maximum=2 * np.pi, periodic_boundary=True),
+                luminosity_distance=bilby.gw.prior.UniformComovingVolume(
+                    name='luminosity_distance', minimum=1e2,
+                    maximum=5e3, unit='Mpc', periodic_boundary=False),
+                dec=bilby.core.prior.Cosine(name='dec', periodic_boundary=False),
+                ra=bilby.core.prior.Uniform(
+                    name='ra', minimum=0, maximum=2 * np.pi, periodic_boundary=True),
+                theta_jn=bilby.core.prior.Sine(name='theta_jn', periodic_boundary=False),
+                psi=bilby.core.prior.Uniform(name='psi', minimum=0, maximum=np.pi, periodic_boundary=True),
+                phase=bilby.core.prior.Uniform(
+                    name='phase', minimum=0, maximum=2 * np.pi, periodic_boundary=True)
+            )
         )
-        self.assertDictEqual(expected, prior_set)
+        all_keys = set(prior_set.keys()).union(set(expected.keys()))
+        for key in all_keys:
+            self.assertEqual(expected[key], prior_set[key])
 
     def test_dict_argument_is_not_string_or_dict(self):
         with self.assertRaises(ValueError):
diff --git a/test/proposal_test.py b/test/proposal_test.py
new file mode 100644
index 000000000..dc86444c4
--- /dev/null
+++ b/test/proposal_test.py
@@ -0,0 +1,433 @@
+import unittest
+import mock
+import random
+
+import numpy as np
+
+import bilby.gw.sampler.proposal
+from bilby.core import prior
+from bilby.core.sampler import proposal
+
+
+class TestSample(unittest.TestCase):
+
+    def setUp(self):
+        self.sample = proposal.Sample(dict(a=1, c=2))
+
+    def tearDown(self):
+        del self.sample
+
+    def test_add_sample(self):
+        other = proposal.Sample(dict(a=2, c=5))
+        expected = proposal.Sample(dict(a=3, c=7))
+        self.assertDictEqual(expected, self.sample + other)
+
+    def test_subtract_sample(self):
+        other = proposal.Sample(dict(a=2, c=5))
+        expected = proposal.Sample(dict(a=-1, c=-3))
+        self.assertDictEqual(expected, self.sample - other)
+
+    def test_multiply_sample(self):
+        other = 2
+        expected = proposal.Sample(dict(a=2, c=4))
+        self.assertDictEqual(expected, self.sample * other)
+
+
+class TestJumpProposal(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(reflecting=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=False),
+                                           periodic=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=True),
+                                           default=prior.Uniform(minimum=-0.5, maximum=1)))
+        self.sample_above = dict(reflecting=1.1, periodic=1.1, default=1.1)
+        self.sample_below = dict(reflecting=-0.6, periodic=-0.6, default=-0.6)
+        self.sample_way_above_case1 = dict(reflecting=272, periodic=272, default=272)
+        self.sample_way_above_case2 = dict(reflecting=270.1, periodic=270.1, default=270.1)
+        self.sample_way_below_case1 = dict(reflecting=-274, periodic=-274.1, default=-274)
+        self.sample_way_below_case2 = dict(reflecting=-273.1, periodic=-273.1, default=-273.1)
+        self.jump_proposal = proposal.JumpProposal(priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.sample_above
+        del self.sample_below
+        del self.sample_way_above_case1
+        del self.sample_way_above_case2
+        del self.sample_way_below_case1
+        del self.sample_way_below_case2
+        del self.jump_proposal
+
+    def test_set_get_log_j(self):
+        self.jump_proposal.log_j = 2.3
+        self.assertEqual(2.3, self.jump_proposal.log_j)
+
+    def test_boundary_above_reflecting(self):
+        new_sample = self.jump_proposal(self.sample_above)
+        self.assertAlmostEqual(0.9, new_sample['reflecting'])
+
+    def test_boundary_above_periodic(self):
+        new_sample = self.jump_proposal(self.sample_above)
+        self.assertAlmostEqual(-0.4, new_sample['periodic'])
+
+    def test_boundary_above_default(self):
+        new_sample = self.jump_proposal(self.sample_above)
+        self.assertAlmostEqual(0.9, new_sample['default'])
+
+    def test_boundary_below_reflecting(self):
+        new_sample = self.jump_proposal(self.sample_below)
+        self.assertAlmostEqual(-0.4, new_sample['reflecting'])
+
+    def test_boundary_below_periodic(self):
+        new_sample = self.jump_proposal(self.sample_below)
+        self.assertAlmostEqual(0.9, new_sample['periodic'])
+
+    def test_boundary_below_default(self):
+        new_sample = self.jump_proposal(self.sample_below)
+        self.assertAlmostEqual(-0.4, new_sample['default'])
+
+    def test_boundary_way_below_reflecting_case1(self):
+        new_sample = self.jump_proposal(self.sample_way_below_case1)
+        self.assertAlmostEqual(0.0, new_sample['reflecting'])
+
+    def test_boundary_way_below_reflecting_case2(self):
+        new_sample = self.jump_proposal(self.sample_way_below_case2)
+        self.assertAlmostEqual(-0.1, new_sample['reflecting'])
+
+    def test_boundary_way_below_periodic(self):
+        new_sample = self.jump_proposal(self.sample_way_below_case2)
+        self.assertAlmostEqual(-0.1, new_sample['periodic'])
+
+    def test_boundary_way_above_reflecting_case1(self):
+        new_sample = self.jump_proposal(self.sample_way_above_case1)
+        self.assertAlmostEqual(0.0, new_sample['reflecting'])
+
+    def test_boundary_way_above_reflecting_case2(self):
+        new_sample = self.jump_proposal(self.sample_way_above_case2)
+        self.assertAlmostEqual(0.1, new_sample['reflecting'])
+
+    def test_boundary_way_above_periodic(self):
+        new_sample = self.jump_proposal(self.sample_way_above_case2)
+        self.assertAlmostEqual(0.1, new_sample['periodic'])
+
+    def test_priors(self):
+        self.assertEqual(self.priors, self.jump_proposal.priors)
+
+
+class TestNormJump(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(reflecting=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=True),
+                                           periodic=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=False),
+                                           default=prior.Uniform(minimum=-0.5, maximum=1)))
+        self.jump_proposal = proposal.NormJump(step_size=3.0, priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_step_size_init(self):
+        self.assertEqual(3.0, self.jump_proposal.step_size)
+
+    def test_set_step_size(self):
+        self.jump_proposal.step_size = 1.0
+        self.assertEqual(1.0, self.jump_proposal.step_size)
+
+    def test_jump_proposal_call(self):
+        with mock.patch("numpy.random.normal") as m:
+            m.return_value = 0.5
+            sample = proposal.Sample(dict(reflecting=0.0, periodic=0.0, default=0.0))
+            new_sample = self.jump_proposal(sample)
+            expected = proposal.Sample(dict(reflecting=0.5, periodic=0.5, default=0.5))
+            self.assertDictEqual(expected, new_sample)
+
+
+class TestEnsembleWalk(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(reflecting=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=False),
+                                           periodic=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=True),
+                                           default=prior.Uniform(minimum=-0.5, maximum=1)))
+        self.jump_proposal = proposal.EnsembleWalk(random_number_generator=random.random,
+                                                   n_points=4, priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_n_points_init(self):
+        self.assertEqual(4, self.jump_proposal.n_points)
+
+    def test_set_n_points(self):
+        self.jump_proposal.n_points = 3
+        self.assertEqual(3, self.jump_proposal.n_points)
+
+    def test_random_number_generator_init(self):
+        self.assertEqual(random.random, self.jump_proposal.random_number_generator)
+
+    def test_get_center_of_mass(self):
+        samples = [proposal.Sample(dict(reflecting=0.1*i, periodic=0.1*i, default=0.1*i)) for i in range(3)]
+        expected = proposal.Sample(dict(reflecting=0.1, periodic=0.1, default=0.1))
+        actual = self.jump_proposal.get_center_of_mass(samples)
+        for key in samples[0].keys():
+            self.assertAlmostEqual(expected[key], actual[key])
+
+    def test_jump_proposal_call(self):
+        with mock.patch('random.sample') as m:
+            self.jump_proposal.random_number_generator = lambda: 2
+            m.return_value = [proposal.Sample(dict(periodic=0.3, reflecting=0.3, default=0.3)),
+                              proposal.Sample(dict(periodic=0.1, reflecting=0.1, default=0.1))]
+            sample = proposal.Sample(dict(periodic=0.1, reflecting=0.1, default=0.1))
+            new_sample = self.jump_proposal(sample, coordinates=None)
+            expected = proposal.Sample(dict(periodic=0.1, reflecting=0.1, default=0.1))
+            for key, value in new_sample.items():
+                self.assertAlmostEqual(expected[key], value)
+
+
+class TestEnsembleEnsembleStretch(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(reflecting=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=False),
+                                           periodic=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=True),
+                                           default=prior.Uniform(minimum=-0.5, maximum=1)))
+        self.jump_proposal = proposal.EnsembleStretch(scale=3.0, priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_scale_init(self):
+        self.assertEqual(3.0, self.jump_proposal.scale)
+
+    def test_set_get_scale(self):
+        self.jump_proposal.scale = 5.0
+        self.assertEqual(5.0, self.jump_proposal.scale)
+
+    def test_jump_proposal_call(self):
+        with mock.patch('random.choice') as m:
+            with mock.patch('random.uniform') as n:
+                second_sample = proposal.Sample(dict(periodic=0.3, reflecting=0.3, default=0.3))
+                random_number = 0.5
+                m.return_value = second_sample
+                n.return_value = random_number
+                sample = proposal.Sample(dict(periodic=0.1, reflecting=0.1, default=0.1))
+                new_sample = self.jump_proposal(sample, coordinates=None)
+                coords = 0.3 - 0.2 * np.exp(random_number * np.log(self.jump_proposal.scale))
+                expected = proposal.Sample(dict(periodic=coords, reflecting=coords, default=coords))
+                for key, value in new_sample.items():
+                    self.assertAlmostEqual(expected[key], value)
+
+    def test_log_j_after_call(self):
+        with mock.patch('random.uniform') as m1:
+            with mock.patch('numpy.log') as m2:
+                with mock.patch('numpy.exp') as m3:
+                    m1.return_value = 1
+                    m2.return_value = 1
+                    m3.return_value = 1
+                    coordinates = [proposal.Sample(dict(periodic=0.3, reflecting=0.3, default=0.3)),
+                                   proposal.Sample(dict(periodic=0.3, reflecting=0.3, default=0.3))]
+                    sample = proposal.Sample(dict(periodic=0.2, reflecting=0.2, default=0.2))
+                    self.jump_proposal(sample=sample,
+                                       coordinates=coordinates)
+                    self.assertEqual(3, self.jump_proposal.log_j)
+
+
+class TestDifferentialEvolution(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(reflecting=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=False),
+                                           periodic=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=True),
+                                           default=prior.Uniform(minimum=-0.5, maximum=1)))
+        self.jump_proposal = proposal.DifferentialEvolution(sigma=1e-3, mu=0.5, priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_mu_init(self):
+        self.assertEqual(0.5, self.jump_proposal.mu)
+
+    def test_set_get_mu(self):
+        self.jump_proposal.mu = 1
+        self.assertEqual(1, self.jump_proposal.mu)
+
+    def test_set_get_sigma(self):
+        self.jump_proposal.sigma = 2
+        self.assertEqual(2, self.jump_proposal.sigma)
+
+    def test_jump_proposal_call(self):
+        with mock.patch('random.sample') as m:
+            with mock.patch('random.gauss') as n:
+                m.return_value = proposal.Sample(dict(periodic=0.2, reflecting=0.2, default=0.2)),\
+                                 proposal.Sample(dict(periodic=0.3, reflecting=0.3, default=0.3))
+                n.return_value = 1
+                sample = proposal.Sample(dict(periodic=0.1, reflecting=0.1, default=0.1))
+                expected = proposal.Sample(dict(periodic=0.2, reflecting=0.2, default=0.2))
+                new_sample = self.jump_proposal(sample, coordinates=None)
+                for key, value in new_sample.items():
+                    self.assertAlmostEqual(expected[key], value)
+
+
+class TestEnsembleEigenVector(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(reflecting=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=False),
+                                           periodic=prior.Uniform(minimum=-0.5, maximum=1, periodic_boundary=True),
+                                           default=prior.Uniform(minimum=-0.5, maximum=1)))
+        self.jump_proposal = proposal.EnsembleEigenVector(priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_init_eigen_values(self):
+        self.assertIsNone(self.jump_proposal.eigen_values)
+
+    def test_init_eigen_vectors(self):
+        self.assertIsNone(self.jump_proposal.eigen_vectors)
+
+    def test_init_covariance(self):
+        self.assertIsNone(self.jump_proposal.covariance)
+
+    def test_jump_proposal_update_eigenvectors_none(self):
+        self.assertIsNone(self.jump_proposal.update_eigenvectors(coordinates=None))
+
+    def test_jump_proposal_update_eigenvectors_1_d(self):
+        coordinates = [proposal.Sample(dict(periodic=0.3)), proposal.Sample(dict(periodic=0.1))]
+        with mock.patch('numpy.var') as m:
+            m.return_value = 1
+            self.jump_proposal.update_eigenvectors(coordinates)
+            self.assertTrue(np.equal(np.array([1]), self.jump_proposal.eigen_values))
+            self.assertTrue(np.equal(np.array([1]), self.jump_proposal.covariance))
+            self.assertTrue(np.equal(np.array([[1.]]), self.jump_proposal.eigen_vectors))
+
+    def test_jump_proposal_update_eigenvectors_n_d(self):
+        coordinates = [proposal.Sample(dict(periodic=0.3, reflecting=0.3, default=0.3)),
+                       proposal.Sample(dict(periodic=0.1, reflecting=0.1, default=0.1))]
+        with mock.patch('numpy.cov') as m:
+            with mock.patch('numpy.linalg.eigh') as n:
+                m.side_effect = lambda x: x
+                n.return_value = 1, 2
+                self.jump_proposal.update_eigenvectors(coordinates)
+                self.assertTrue(np.array_equal(np.array([[0.3, 0.1], [0.3, 0.1], [0.3, 0.1]]), self.jump_proposal.covariance))
+                self.assertEqual(1, self.jump_proposal.eigen_values)
+                self.assertEqual(2, self.jump_proposal.eigen_vectors)
+
+    def test_jump_proposal_call(self):
+        self.jump_proposal.update_eigenvectors = lambda x: None
+        self.jump_proposal.eigen_values = np.array([1, np.nan, np.nan])
+        self.jump_proposal.eigen_vectors = np.array([[0.1, np.nan, np.nan],
+                                                    [0.4, np.nan, np.nan],
+                                                    [0.7, np.nan, np.nan]])
+        with mock.patch('random.randrange') as m:
+            with mock.patch('random.gauss') as n:
+                m.return_value = 0
+                n.return_value = 1
+                expected = proposal.Sample()
+                expected['periodic'] = 0.2
+                expected['reflecting'] = 0.5
+                expected['default'] = 0.8
+                sample = proposal.Sample()
+                sample['periodic'] = 0.1
+                sample['reflecting'] = 0.1
+                sample['default'] = 0.1
+                new_sample = self.jump_proposal(sample, coordinates=None)
+                for key, value in new_sample.items():
+                    self.assertAlmostEqual(expected[key], value)
+
+
+class TestSkyLocationWanderJump(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(ra=prior.Uniform(minimum=0.0, maximum=2*np.pi, periodic_boundary=True),
+                                           dec=prior.Uniform(minimum=0.0, maximum=np.pi, periodic_boundary=False)))
+        self.jump_proposal = bilby.gw.sampler.proposal.SkyLocationWanderJump(priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_jump_proposal_call_without_inverse_temperature(self):
+        with mock.patch('random.gauss') as m:
+            m.return_value = 1
+            sample = proposal.Sample(dict(ra=0.2, dec=-0.5))
+            expected = proposal.Sample(dict(ra=1.2, dec=0.5))
+            new_sample = self.jump_proposal(sample)
+            for key, value in new_sample.items():
+                self.assertAlmostEqual(expected[key], value)
+            m.assert_called_with(0, 1.0 / 2 / np.pi)
+
+    def test_jump_proposal_call_with_inverse_temperature(self):
+        with mock.patch('random.gauss') as m:
+            m.return_value = 1
+            sample = proposal.Sample(dict(ra=0.2, dec=-0.5))
+            expected = proposal.Sample(dict(ra=1.2, dec=0.5))
+            new_sample = self.jump_proposal(sample, inverse_temperature=2.0)
+            for key, value in new_sample.items():
+                self.assertAlmostEqual(expected[key], value)
+            m.assert_called_with(0, np.sqrt(1 / 2.0) / 2 / np.pi)
+
+
+class TestCorrelatedPolarisationPhaseJump(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(phase=prior.Uniform(minimum=0.0, maximum=2*np.pi),
+                                           psi=prior.Uniform(minimum=0.0, maximum=np.pi)))
+        self.jump_proposal = bilby.gw.sampler.proposal.CorrelatedPolarisationPhaseJump(priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_jump_proposal_call_case_1(self):
+        with mock.patch('random.random') as m:
+            m.return_value = 0.3
+            sample = proposal.Sample(dict(phase=0.2, psi=0.5))
+            alpha = 3.0 * np.pi * 0.3
+            beta = 0.3
+            expected = proposal.Sample(dict(phase=0.5*(alpha-beta), psi=0.5*(alpha+beta)))
+            self.assertEqual(expected, self.jump_proposal(sample, coordinates=None))
+
+    def test_jump_proposal_call_case_2(self):
+        with mock.patch('random.random') as m:
+            m.return_value = 0.7
+            sample = proposal.Sample(dict(phase=0.2, psi=0.5))
+            alpha = 0.7
+            beta = 3.0 * np.pi * 0.7 - 2 * np.pi
+            expected = proposal.Sample(dict(phase=0.5*(alpha-beta), psi=0.5*(alpha+beta)))
+            self.assertEqual(expected, self.jump_proposal(sample))
+
+
+class TestPolarisationPhaseJump(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(phase=prior.Uniform(minimum=0.0, maximum=2*np.pi),
+                                           psi=prior.Uniform(minimum=0.0, maximum=np.pi)))
+        self.jump_proposal = bilby.gw.sampler.proposal.PolarisationPhaseJump(priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_jump_proposal_call(self):
+        sample = proposal.Sample(dict(phase=0.2, psi=0.5))
+        expected = proposal.Sample(dict(phase=0.2+np.pi, psi=0.5+np.pi/2))
+        self.assertEqual(expected, self.jump_proposal(sample))
+
+
+class TestDrawFlatPrior(unittest.TestCase):
+
+    def setUp(self):
+        self.priors = prior.PriorDict(dict(phase=prior.Uniform(minimum=0.0, maximum=2*np.pi),
+                                           psi=prior.Cosine(minimum=0.0, maximum=np.pi)))
+        self.jump_proposal = proposal.DrawFlatPrior(priors=self.priors)
+
+    def tearDown(self):
+        del self.priors
+        del self.jump_proposal
+
+    def test_jump_proposal_call(self):
+        with mock.patch('bilby.core.prior.Uniform.sample') as m:
+            m.return_value = 0.3
+            sample = proposal.Sample(dict(phase=0.2, psi=0.5))
+            expected = proposal.Sample(dict(phase=0.3, psi=0.3))
+            self.assertEqual(expected, self.jump_proposal(sample))
diff --git a/test/sampler_test.py b/test/sampler_test.py
index 2500fab13..314605470 100644
--- a/test/sampler_test.py
+++ b/test/sampler_test.py
@@ -113,13 +113,13 @@ class TestCPNest(unittest.TestCase):
     def test_default_kwargs(self):
         expected = dict(verbose=1, nthreads=1, nlive=500, maxmcmc=1000,
                         seed=None, poolsize=100, nhamiltonian=0, resume=True,
-                        output='outdir/cpnest_label/')
+                        output='outdir/cpnest_label/', proposals=None)
         self.assertDictEqual(expected, self.sampler.kwargs)
 
     def test_translate_kwargs(self):
         expected = dict(verbose=1, nthreads=1, nlive=250, maxmcmc=1000,
                         seed=None, poolsize=100, nhamiltonian=0, resume=True,
-                        output='outdir/cpnest_label/')
+                        output='outdir/cpnest_label/', proposals=None)
         for equiv in bilby.core.sampler.base_sampler.NestedSampler.npoints_equiv_kwargs:
             new_kwargs = self.sampler.kwargs.copy()
             del new_kwargs['nlive']
-- 
GitLab