diff --git a/bilby/core/prior.py b/bilby/core/prior.py index 4ab67c87c266e195cf1f16b4bed275a38fa9d0ff..fe86213a8eed9c502a7813e0c58a38fda13894dd 100644 --- a/bilby/core/prior.py +++ b/bilby/core/prior.py @@ -770,6 +770,86 @@ class LogUniform(PowerLaw): logger.warning('You specified a uniform-in-log prior with minimum={}'.format(self.minimum)) +class SymmetricLogUniform(Prior): + + def __init__(self, minimum, maximum, name=None, latex_label=None, + unit=None): + """Symmetric Log-Uniform distribtions with bounds + + This is identical to a Log-Uniform distribition, but mirrored about + the zero-axis and subsequently normalized. As such, the distribution + has support on the two regions [-maximum, -minimum] and [minimum, + maximum]. + + Parameters + ---------- + minimum: float + See superclass + maximum: float + See superclass + name: str + See superclass + latex_label: str + See superclass + unit: str + See superclass + """ + Prior.__init__(self, name=name, latex_label=latex_label, + minimum=minimum, maximum=maximum, unit=unit) + + def rescale(self, val): + """ + 'Rescale' a sample from the unit line element to the power-law prior. + + This maps to the inverse CDF. This has been analytically solved for this case. + + Parameters + ---------- + val: float + Uniform probability + + Returns + ------- + float: Rescaled probability + """ + Prior.test_valid_for_rescaling(val) + if val < 0.5: + return -self.maximum * np.exp(-2 * val * np.log(self.maximum / self.minimum)) + elif val > 0.5: + return self.minimum * np.exp(np.log(self.maximum / self.minimum) * (2 * val - 1)) + else: + raise ValueError("Rescale not valid for val=0.5") + + def prob(self, val): + """Return the prior probability of val + + Parameters + ---------- + val: float + + Returns + ------- + float: Prior probability of val + """ + return ( + np.nan_to_num(0.5 / np.abs(val) / np.log(self.maximum / self.minimum)) * + self.is_in_prior_range(val)) + + def ln_prob(self, val): + """Return the logarithmic prior probability of val + + Parameters + ---------- + val: float + + Returns + ------- + float: + + """ + return np.nan_to_num(- np.log(2 * np.abs(val)) - np.log(np.log(self.maximum / self.minimum))) + + class Cosine(Prior): def __init__(self, name=None, latex_label=None, unit=None,