diff --git a/tutorials/BasicTutorial.py b/tutorials/BasicTutorial.py index 345690fdd6b61b5918e8f1f4e9d2970a3b2fb0da..7208352e9d936004c7c923543294c8f3ed158680 100644 --- a/tutorials/BasicTutorial.py +++ b/tutorials/BasicTutorial.py @@ -1,42 +1,26 @@ import numpy as np import pylab as plt + +import peyote +import dynesty.plotting as dyplot import corner import peyote -import dyplot + # peyote.setup_logging() time_duration = 1. sampling_frequency = 4096. -# simulation_parameters = dict( -# mass_1=36., mass_2=29., -# spin_1=[0, 0, 0], -# spin_2=[0, 0, 0], -# luminosity_distance=100., -# iota=0.4, #np.pi/2, -# phase=1.3, -# waveform_approximant='IMRPhenomPv2', -# reference_frequency=50., -# ra=1.375, -# dec=-1.2108, -# geocent_time=1126259642.413, -# psi=2.659 -# ) + source = peyote.source.BinaryBlackHole('BBH', sampling_frequency, time_duration, mass_1=36., mass_2=29., spin_1=[0, 0, 0], spin_2=[0, 0, 0], luminosity_distance=100., iota=0.4, phase=1.3, waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375, dec=-1.2108, geocent_time=1126259642.413, psi=2.659) -#source = peyote.source.BinaryBlackHole('BBH', sampling_frequency, time_duration) +# source = peyote.source.BinaryBlackHole('BBH', sampling_frequency, time_duration) hf_signal = source.frequency_domain_strain() -# plt.loglog(source.frequency_array, np.abs(hf_signal['plus'])) -# plt.show() - - -# In[3]: - # Simulate the data in H1 H1 = peyote.detector.H1 @@ -67,7 +51,6 @@ plt.xlabel(r'frequency') plt.ylabel(r'strain') fig.savefig('data') - likelihood = peyote.likelihood.Likelihood(IFOs, source) prior = source.copy() @@ -87,10 +70,9 @@ prior.luminosity_distance = peyote.parameter.Parameter( result = peyote.run_sampler(likelihood, prior, sampler='nestle', n_live_points=200, verbose=True) - truths = [source.__dict__[x] for x in result.search_parameter_keys] fig = corner.corner(result.samples, truths=truths, labels=result.search_parameter_keys) fig.savefig('corner') -#fig, axes = dyplot.traceplot(result['sampler_output']) -#fig.savefig('trace') +fig, axes = dyplot.traceplot(result['sampler_output']) +fig.savefig('trace')