diff --git a/bilby/core/prior.py b/bilby/core/prior.py
index cd0e8e8a549dadb0ac1ca8f08886ffc7e7a80de5..d77ac9d6343170beddffc6a85b2e318972a17088 100644
--- a/bilby/core/prior.py
+++ b/bilby/core/prior.py
@@ -1888,11 +1888,21 @@ class MultivariateGaussianDist(object):
             if covs is not None:
                 if isinstance(covs, np.ndarray):
                     covs = [covs]
-                elif not isinstance(covs, list):
+                elif isinstance(covs, list):
+                    if len(np.shape(covs)) == 2:
+                        covs = [np.array(covs)]
+                    elif len(np.shape(covs)) != 3:
+                        raise TypeError("List of covariances the wrong shape")
+                else:
                     raise TypeError("Must pass a list of covariances")
             if corrcoefs is not None:
                 if isinstance(corrcoefs, np.ndarray):
                     corrcoefs = [corrcoefs]
+                elif isinstance(corrcoefs, list):
+                    if len(np.shape(corrcoefs)) == 2:
+                        corrcoefs = [np.array(corrcoefs)]
+                    elif len(np.shape(corrcoefs)) != 3:
+                        raise TypeError("List of correlation coefficients the wrong shape")
                 elif not isinstance(corrcoefs, list):
                     raise TypeError("Must pass a list of correlation "
                                     "coefficients")
diff --git a/docs/prior.txt b/docs/prior.txt
index ed5eaab1c5d91dfdc18d617a1f88be9a90378134..867a843516e4c4db7dff685cf8953e431f1f46e6 100644
--- a/docs/prior.txt
+++ b/docs/prior.txt
@@ -83,6 +83,53 @@ note that this list is incomplete.
    :members:
    :special-members:
 
+Multivariate Gaussian prior
+===========================
+
+We provide a prior class for correlated parameters in the form of a
+`multivariate Gaussian distribution <https://en.wikipedia.org/wiki/Multivariate_normal_distribution>`_.
+To set the prior you first must define the distribution using the 
+:class:`bilby.core.prior.MultivariateGaussianDist` class. This requires the names of the
+correlated variables, their means, and either the covariance matrix or the correlation
+matrix and standard deviations, e.g.:
+
+.. code:: python
+
+   >>> names = ['a', 'b']  # set the parameter names
+   >>> mu = [0., 5.]  # the means of the parameters
+   >>> cov = [[2., 0.7], [0.7, 3.]]  # the covariance matrix
+   >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov)
+
+It is also possible to define a mixture model of multiple multivariate Gaussian modes of
+different weights if required, e.g.:
+
+.. code:: python
+
+   >>> names = ['a', 'b']  # set the parameter names
+   >>> mu = [[0., 5.], [2., 7.]]  # the means of the parameters
+   >>> cov = [[[2., 0.7], [0.7, 3.]], [[1., -0.9], [-0.9, 5.]]]  # the covariance matrix
+   >>> weights = [0.3, 0.7]  # weights of each mode
+   >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights)
+
+The distribution can also have hard bounds on each parameter by supplying them.
+
+The :class:`bilby.core.prior.MultivariateGaussianDist` class can then be passed to
+a :class:`bilby.core.prior.MultivariateGaussian` prior for each parameter, e.g.:
+
+.. code:: python
+
+   >>> priors = dict()
+   >>> priors['a'] = bilby.core.prior.MultivariateGaussian(mvg, 'a')
+   >>> priors['b'] = bilby.core.prior.MultivariateGaussian(mvg, 'b')
+
+The detailed API information for the distribution and prior classes are below:
+
+.. autoclass:: bilby.core.prior.MultivariateGaussianDist
+   :members:
+
+.. autoclass:: bilby.core.prior.MultivariateGaussian
+   :members:
+
 Defining your own prior
 =======================
 
diff --git a/examples/other_examples/multivariate_gaussian_prior.py b/examples/other_examples/multivariate_gaussian_prior.py
index d74f81a334886ef5d578df5af1105fb463892d2d..b175a284eca4d3f7c38d86865ab3c13c4b92bfa5 100644
--- a/examples/other_examples/multivariate_gaussian_prior.py
+++ b/examples/other_examples/multivariate_gaussian_prior.py
@@ -69,4 +69,3 @@ result = bilby.run_sampler(
 #     likelihood=likelihood, priors=priors, sampler='emcee', nsteps=1000,
 #     nwalkers=200, nburn=500, outdir=outdir, label=label)
 result.plot_corner()
-