diff --git a/bilby/core/prior.py b/bilby/core/prior.py index cd0e8e8a549dadb0ac1ca8f08886ffc7e7a80de5..d77ac9d6343170beddffc6a85b2e318972a17088 100644 --- a/bilby/core/prior.py +++ b/bilby/core/prior.py @@ -1888,11 +1888,21 @@ class MultivariateGaussianDist(object): if covs is not None: if isinstance(covs, np.ndarray): covs = [covs] - elif not isinstance(covs, list): + elif isinstance(covs, list): + if len(np.shape(covs)) == 2: + covs = [np.array(covs)] + elif len(np.shape(covs)) != 3: + raise TypeError("List of covariances the wrong shape") + else: raise TypeError("Must pass a list of covariances") if corrcoefs is not None: if isinstance(corrcoefs, np.ndarray): corrcoefs = [corrcoefs] + elif isinstance(corrcoefs, list): + if len(np.shape(corrcoefs)) == 2: + corrcoefs = [np.array(corrcoefs)] + elif len(np.shape(corrcoefs)) != 3: + raise TypeError("List of correlation coefficients the wrong shape") elif not isinstance(corrcoefs, list): raise TypeError("Must pass a list of correlation " "coefficients") diff --git a/docs/prior.txt b/docs/prior.txt index ed5eaab1c5d91dfdc18d617a1f88be9a90378134..867a843516e4c4db7dff685cf8953e431f1f46e6 100644 --- a/docs/prior.txt +++ b/docs/prior.txt @@ -83,6 +83,53 @@ note that this list is incomplete. :members: :special-members: +Multivariate Gaussian prior +=========================== + +We provide a prior class for correlated parameters in the form of a +`multivariate Gaussian distribution <https://en.wikipedia.org/wiki/Multivariate_normal_distribution>`_. +To set the prior you first must define the distribution using the +:class:`bilby.core.prior.MultivariateGaussianDist` class. This requires the names of the +correlated variables, their means, and either the covariance matrix or the correlation +matrix and standard deviations, e.g.: + +.. code:: python + + >>> names = ['a', 'b'] # set the parameter names + >>> mu = [0., 5.] # the means of the parameters + >>> cov = [[2., 0.7], [0.7, 3.]] # the covariance matrix + >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov) + +It is also possible to define a mixture model of multiple multivariate Gaussian modes of +different weights if required, e.g.: + +.. code:: python + + >>> names = ['a', 'b'] # set the parameter names + >>> mu = [[0., 5.], [2., 7.]] # the means of the parameters + >>> cov = [[[2., 0.7], [0.7, 3.]], [[1., -0.9], [-0.9, 5.]]] # the covariance matrix + >>> weights = [0.3, 0.7] # weights of each mode + >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights) + +The distribution can also have hard bounds on each parameter by supplying them. + +The :class:`bilby.core.prior.MultivariateGaussianDist` class can then be passed to +a :class:`bilby.core.prior.MultivariateGaussian` prior for each parameter, e.g.: + +.. code:: python + + >>> priors = dict() + >>> priors['a'] = bilby.core.prior.MultivariateGaussian(mvg, 'a') + >>> priors['b'] = bilby.core.prior.MultivariateGaussian(mvg, 'b') + +The detailed API information for the distribution and prior classes are below: + +.. autoclass:: bilby.core.prior.MultivariateGaussianDist + :members: + +.. autoclass:: bilby.core.prior.MultivariateGaussian + :members: + Defining your own prior ======================= diff --git a/examples/other_examples/multivariate_gaussian_prior.py b/examples/other_examples/multivariate_gaussian_prior.py index d74f81a334886ef5d578df5af1105fb463892d2d..b175a284eca4d3f7c38d86865ab3c13c4b92bfa5 100644 --- a/examples/other_examples/multivariate_gaussian_prior.py +++ b/examples/other_examples/multivariate_gaussian_prior.py @@ -69,4 +69,3 @@ result = bilby.run_sampler( # likelihood=likelihood, priors=priors, sampler='emcee', nsteps=1000, # nwalkers=200, nburn=500, outdir=outdir, label=label) result.plot_corner() -