diff --git a/tupak/gw/conversion.py b/tupak/gw/conversion.py
index 28c5b057da7fc99ad74d53729fb53db4c4e41f06..858d145b6f5566d138d6ee52ed02d7d3449a0ad4 100644
--- a/tupak/gw/conversion.py
+++ b/tupak/gw/conversion.py
@@ -47,7 +47,7 @@ def luminosity_distance_to_comoving_distance(distance):
     return redshift_to_comoving_distance(redshift)
 
 
-def convert_to_lal_binary_black_hole_parameters(parameters, search_keys, remove=True):
+def convert_to_lal_binary_black_hole_parameters(parameters):
     """
     Convert parameters we have into parameters we need.
 
@@ -65,10 +65,6 @@ def convert_to_lal_binary_black_hole_parameters(parameters, search_keys, remove=
     ----------
     parameters: dict
         dictionary of parameter values to convert into the required parameters
-    search_keys: list
-        parameters which are needed for the waveform generation
-    remove: bool, optional
-        Whether or not to remove the extra key, necessary for sampling, default=True.
 
     Return
     ------
@@ -78,100 +74,85 @@ def convert_to_lal_binary_black_hole_parameters(parameters, search_keys, remove=
         keys which are added to parameters during function call
     """
 
-    added_keys = []
     converted_parameters = parameters.copy()
-
-    if 'mass_1' not in search_keys and 'mass_2' not in search_keys:
-        if 'chirp_mass' in converted_parameters.keys():
-            if 'total_mass' in converted_parameters.keys() and 'total_mass' not in added_keys:
-                converted_parameters['symmetric_mass_ratio'] = chirp_mass_and_total_mass_to_symmetric_mass_ratio(
-                    converted_parameters['chirp_mass'], converted_parameters['total_mass'])
-                if remove:
-                    added_keys.append('chirp_mass')
-            if 'symmetric_mass_ratio' in converted_parameters.keys() and 'symmetric_mass_ratio' not in added_keys:
-                converted_parameters['mass_ratio'] = \
-                    symmetric_mass_ratio_to_mass_ratio(converted_parameters['symmetric_mass_ratio'])
-                if remove:
-                    added_keys.append('symmetric_mass_ratio')
-            if 'mass_ratio' in converted_parameters.keys() and 'mass_ratio' not in added_keys:
-                if 'total_mass' not in converted_parameters.keys() and 'total_mass' not in added_keys:
-                    converted_parameters['total_mass'] = chirp_mass_and_mass_ratio_to_total_mass(
-                        converted_parameters['chirp_mass'], converted_parameters['mass_ratio'])
-                    if remove:
-                        added_keys.append('chirp_mass')
-                converted_parameters['mass_1'], converted_parameters['mass_2'] = \
-                    total_mass_and_mass_ratio_to_component_masses(converted_parameters['mass_ratio'],
-                                                                  converted_parameters['total_mass'])
-                if remove:
-                    added_keys.append('total_mass')
-                    added_keys.append('mass_ratio')
-            added_keys.append('mass_1')
-            added_keys.append('mass_2')
-        elif 'total_mass' in converted_parameters.keys() and 'mass_ratio' not in added_keys:
-            if 'symmetric_mass_ratio' in converted_parameters.keys() and 'symmetric_mass_ratio' not in added_keys:
-                converted_parameters['mass_ratio'] = \
-                    symmetric_mass_ratio_to_mass_ratio(converted_parameters['symmetric_mass_ratio'])
-                if remove:
-                    added_keys.append('symmetric_mass_ratio')
-            if 'mass_ratio' in converted_parameters.keys() and 'mass_ratio' not in added_keys:
-                converted_parameters['mass_1'], converted_parameters['mass_2'] = \
-                    total_mass_and_mass_ratio_to_component_masses(
-                        converted_parameters['mass_ratio'], converted_parameters['total_mass'])
-                if remove:
-                    added_keys.append('total_mass')
-                    added_keys.append('mass_ratio')
-            added_keys.append('mass_1')
-            added_keys.append('mass_2')
-
-    elif 'mass_1' in search_keys and 'mass_2' not in search_keys:
-        if 'chirp_mass' in converted_parameters.keys() and 'chirp_mass' not in added_keys:
+    original_keys = list(converted_parameters.keys()).copy()
+
+    if 'chirp_mass' in converted_parameters.keys():
+        if 'total_mass' in converted_parameters.keys():
+            converted_parameters['symmetric_mass_ratio'] =\
+                chirp_mass_and_total_mass_to_symmetric_mass_ratio(
+                    converted_parameters['chirp_mass'],
+                    converted_parameters['total_mass'])
+        if 'symmetric_mass_ratio' in converted_parameters.keys():
+            converted_parameters['mass_ratio'] =\
+                symmetric_mass_ratio_to_mass_ratio(
+                    converted_parameters['symmetric_mass_ratio'])
+        if 'total_mass' not in converted_parameters.keys():
+            converted_parameters['total_mass'] =\
+                chirp_mass_and_mass_ratio_to_total_mass(
+                    converted_parameters['chirp_mass'],
+                    converted_parameters['mass_ratio'])
+        converted_parameters['mass_1'], converted_parameters['mass_2'] = \
+            total_mass_and_mass_ratio_to_component_masses(
+                converted_parameters['mass_ratio'],
+                converted_parameters['total_mass'])
+    elif 'total_mass' in converted_parameters.keys():
+        if 'symmetric_mass_ratio' in converted_parameters.keys():
             converted_parameters['mass_ratio'] = \
-                mass_1_and_chirp_mass_to_mass_ratio(parameters['mass_1'], parameters['chirp_mass'])
-            temp = (parameters['chirp_mass'] / parameters['mass_1']) ** 5
-            parameters['mass_ratio'] = (
-                (2 * temp / 3 / (
-                    (51 * temp ** 2 - 12 * temp ** 3) ** 0.5 + 9 * temp)) ** (1 / 3) +
-                (((51 * temp ** 2 - 12 * temp ** 3) ** 0.5 + 9 * temp) / 9 / 2 ** 0.5) ** (1 / 3))
-            if remove:
-                added_keys.append('chirp_mass')
-        elif 'symmetric_mass_ratio' in converted_parameters.keys() and 'symmetric_mass_ratio' not in added_keys:
-            converted_parameters['mass_ratio'] = symmetric_mass_ratio_to_mass_ratio(parameters['symmetric_mass_ratio'])
-            if remove:
-                added_keys.append('symmetric_mass_ratio')
-        if 'mass_ratio' in converted_parameters.keys() and 'mass_ratio' not in added_keys:
-            converted_parameters['mass_2'] = converted_parameters['mass_1'] * converted_parameters['mass_ratio']
-            if remove:
-                added_keys.append('mass_ratio')
-            added_keys.append('mass_2')
-        elif 'total_mass' in converted_parameters.keys() and 'total_mass' not in added_keys:
-            converted_parameters['mass_2'] = parameters['total_mass'] - parameters['mass_1']
-            if remove:
-                added_keys.append('total_mass')
-            added_keys.append('mass_2')
+                symmetric_mass_ratio_to_mass_ratio(
+                    converted_parameters['symmetric_mass_ratio'])
+        if 'mass_ratio' in converted_parameters.keys():
+            converted_parameters['mass_1'], converted_parameters['mass_2'] =\
+                total_mass_and_mass_ratio_to_component_masses(
+                    converted_parameters['mass_ratio'],
+                    converted_parameters['total_mass'])
+        elif 'mass_1' in converted_parameters.keys():
+            converted_parameters['mass_2'] =\
+                converted_parameters['total_mass'] -\
+                converted_parameters['mass_1']
+        elif 'mass_2' in converted_parameters.keys():
+            converted_parameters['mass_1'] = \
+                converted_parameters['total_mass'] - \
+                converted_parameters['mass_2']
+    elif 'symmetric_mass_ratio' in converted_parameters.keys():
+        converted_parameters['mass_ratio'] =\
+            symmetric_mass_ratio_to_mass_ratio(
+                converted_parameters['symmetric_mass_ratio'])
+        if 'mass_1' in converted_parameters.keys():
+            converted_parameters['mass_2'] = converted_parameters['mass_1'] *\
+                                             converted_parameters['mass_ratio']
+        elif 'mass_2' in converted_parameters.keys():
+            converted_parameters['mass_1'] = converted_parameters['mass_2'] /\
+                                             converted_parameters['mass_ratio']
+    elif 'mass_ratio' in converted_parameters.keys():
+        if 'mass_1' in converted_parameters.keys():
+            converted_parameters['mass_2'] = converted_parameters['mass_1'] *\
+                                             converted_parameters['mass_ratio']
+        if 'mass_2' in converted_parameters.keys():
+            converted_parameters['mass_1'] = converted_parameters['mass_2'] /\
+                                             converted_parameters['mass_ratio']
 
     for angle in ['tilt_1', 'tilt_2', 'iota']:
         cos_angle = str('cos_' + angle)
         if cos_angle in converted_parameters.keys():
-            converted_parameters[angle] = np.arccos(converted_parameters[cos_angle])
-            added_keys.append(angle)
-
-    if 'luminosity_distance' not in search_keys:
-        if 'redshift' in converted_parameters.keys():
-            converted_parameters['luminosity_distance'] = redshift_to_luminosity_distance(parameters['redshift'])
-            if remove:
-                added_keys.append('redshift')
-        elif 'comoving_distance' in converted_parameters.keys():
-            converted_parameters['luminosity_distance'] = \
-                comoving_distance_to_luminosity_distance(parameters['comoving_distance'])
-            if remove:
-                added_keys.append('comoving_distance')
-
-    added_keys = [key for key in added_keys if key not in search_keys]
+            converted_parameters[angle] =\
+                np.arccos(converted_parameters[cos_angle])
+
+    if 'redshift' in converted_parameters.keys():
+        converted_parameters['luminosity_distance'] =\
+            redshift_to_luminosity_distance(parameters['redshift'])
+    elif 'comoving_distance' in converted_parameters.keys():
+        converted_parameters['luminosity_distance'] = \
+            comoving_distance_to_luminosity_distance(
+                parameters['comoving_distance'])
+
+    added_keys = [key for key in converted_parameters.keys()
+                  if key not in original_keys]
 
     return converted_parameters, added_keys
 
 
-def convert_to_lal_binary_neutron_star_parameters(parameters, search_keys, remove=True):
+def convert_to_lal_binary_neutron_star_parameters(parameters):
     """
     Convert parameters we have into parameters we need.
 
@@ -189,10 +170,6 @@ def convert_to_lal_binary_neutron_star_parameters(parameters, search_keys, remov
     ----------
     parameters: dict
         dictionary of parameter values to convert into the required parameters
-    search_keys: list
-        parameters which are needed for the waveform generation
-    remove: bool, optional
-        Whether or not to remove the extra key, necessary for sampling, default=True.
 
     Return
     ------
@@ -202,36 +179,34 @@ def convert_to_lal_binary_neutron_star_parameters(parameters, search_keys, remov
         keys which are added to parameters during function call
     """
     converted_parameters = parameters.copy()
-    converted_parameters, added_keys = convert_to_lal_binary_black_hole_parameters(
-        converted_parameters, search_keys, remove=remove)
-
-    if 'lambda_1' not in search_keys and 'lambda_2' not in search_keys:
-        if 'delta_lambda' in converted_parameters.keys():
-            converted_parameters['lambda_1'], converted_parameters['lambda_2'] =\
-                lambda_tilde_delta_lambda_to_lambda_1_lambda_2(
-                    converted_parameters['lambda_tilde'], parameters['delta_lambda'],
-                    converted_parameters['mass_1'], converted_parameters['mass_2'])
-            added_keys.append('lambda_1')
-            added_keys.append('lambda_2')
-        elif 'lambda_tilde' in converted_parameters.keys():
-            converted_parameters['lambda_1'], converted_parameters['lambda_2'] =\
-                lambda_tilde_to_lambda_1_lambda_2(
-                    converted_parameters['lambda_tilde'],
-                    converted_parameters['mass_1'], converted_parameters['mass_2'])
-            added_keys.append('lambda_1')
-            added_keys.append('lambda_2')
+    original_keys = list(converted_parameters.keys()).copy()
+    converted_parameters, added_keys =\
+        convert_to_lal_binary_black_hole_parameters(converted_parameters)
+
+    if 'delta_lambda' in converted_parameters.keys():
+        converted_parameters['lambda_1'], converted_parameters['lambda_2'] =\
+            lambda_tilde_delta_lambda_to_lambda_1_lambda_2(
+                converted_parameters['lambda_tilde'],
+                parameters['delta_lambda'], converted_parameters['mass_1'],
+                converted_parameters['mass_2'])
+    elif 'lambda_tilde' in converted_parameters.keys():
+        converted_parameters['lambda_1'], converted_parameters['lambda_2'] =\
+            lambda_tilde_to_lambda_1_lambda_2(
+                converted_parameters['lambda_tilde'],
+                converted_parameters['mass_1'], converted_parameters['mass_2'])
     if 'lambda_2' not in converted_parameters.keys():
         converted_parameters['lambda_2'] =\
             converted_parameters['lambda_1']\
             * converted_parameters['mass_1']**5\
             / converted_parameters['mass_2']**5
-        added_keys.append('lambda_2')
     elif converted_parameters['lambda_2'] is None:
         converted_parameters['lambda_2'] =\
             converted_parameters['lambda_1']\
             * converted_parameters['mass_1']**5\
             / converted_parameters['mass_2']**5
-        added_keys.append('lambda_2')
+
+    added_keys = [key for key in converted_parameters.keys()
+                  if key not in original_keys]
 
     return converted_parameters, added_keys
 
@@ -338,7 +313,7 @@ def component_masses_to_chirp_mass(mass_1, mass_2):
         Chirp mass of the binary
     """
 
-    return (mass_1 * mass_2) ** 0.6 / (component_masses_to_total_mass(mass_1, mass_2)) ** 0.2
+    return (mass_1 * mass_2) ** 0.6 / (mass_1 + mass_2) ** 0.2
 
 
 def component_masses_to_total_mass(mass_1, mass_2):
@@ -420,8 +395,10 @@ def mass_1_and_chirp_mass_to_mass_ratio(mass_1, chirp_mass):
         Mass ratio of the binary
     """
     temp = (chirp_mass / mass_1) ** 5
-    mass_ratio = (2 / 3 / (3 ** 0.5 * (27 * temp ** 2 - 4 * temp ** 3) ** 0.5 + 9 * temp)) ** (1 / 3) * temp + \
-                 ((3 ** 0.5 * (27 * temp ** 2 - 4 * temp ** 3) ** 0.5 + 9 * temp) / (2 * 3 ** 2)) ** (1 / 3)
+    mass_ratio = (2 / 3 / (3 ** 0.5 * (27 * temp ** 2 - 4 * temp ** 3) ** 0.5
+                           + 9 * temp)) ** (1 / 3) * temp + \
+                 ((3 ** 0.5 * (27 * temp ** 2 - 4 * temp ** 3) ** 0.5
+                   + 9 * temp) / (2 * 3 ** 2)) ** (1 / 3)
     return mass_ratio
 
 
@@ -505,25 +482,30 @@ def lambda_tilde_to_lambda_1_lambda_2(
 
 def generate_all_bbh_parameters(sample, likelihood=None, priors=None):
     """
-    From either a single sample or a set of samples fill in all missing BBH parameters, in place.
+    From either a single sample or a set of samples fill in all missing
+    BBH parameters, in place.
 
     Parameters
     ----------
     sample: dict or pandas.DataFrame
-        Samples to fill in with extra parameters, this may be either an injection or posterior samples.
-    likelihood: tupak.gw.likelihood.GravitationalWaveTr, optional
-        GravitationalWaveTransient used for sampling, used for waveform and likelihood.interferometers.
+        Samples to fill in with extra parameters, this may be either an
+        injection or posterior samples.
+    likelihood: tupak.gw.likelihood.GravitationalWaveTransient, optional
+        GravitationalWaveTransient used for sampling, used for waveform and
+        likelihood.interferometers.
     priors: dict, optional
         Dictionary of prior objects, used to fill in non-sampled parameters.
     """
     output_sample = sample.copy()
     if likelihood is not None:
-        output_sample['reference_frequency'] = likelihood.waveform_generator.waveform_arguments['reference_frequency']
-        output_sample['waveform_approximant'] = likelihood.waveform_generator.waveform_arguments['waveform_approximant']
+        output_sample['reference_frequency'] =\
+            likelihood.waveform_generator.waveform_arguments['reference_frequency']
+        output_sample['waveform_approximant'] =\
+            likelihood.waveform_generator.waveform_arguments['waveform_approximant']
 
     output_sample = fill_from_fixed_priors(output_sample, priors)
-    output_sample, _ = convert_to_lal_binary_black_hole_parameters(
-        output_sample, [key for key in output_sample.keys()], remove=False)
+    output_sample, _ =\
+        convert_to_lal_binary_black_hole_parameters(output_sample)
     output_sample = generate_non_standard_parameters(output_sample)
     output_sample = generate_component_spins(output_sample)
     compute_snrs(output_sample, likelihood)
@@ -557,7 +539,8 @@ def generate_non_standard_parameters(sample):
     Add the known non-standard parameters to the data frame/dictionary.
 
     We add:
-        chirp mass, total mass, symmetric mass ratio, mass ratio, cos tilt 1, cos tilt 2, cos iota
+        chirp mass, total mass, symmetric mass ratio, mass ratio, cos tilt 1,
+        cos tilt 2, cos iota
 
     Parameters
     ----------
@@ -570,16 +553,22 @@ def generate_non_standard_parameters(sample):
 
     """
     output_sample = sample.copy()
-    output_sample['chirp_mass'] = component_masses_to_chirp_mass(sample['mass_1'], sample['mass_2'])
-    output_sample['total_mass'] = component_masses_to_total_mass(sample['mass_1'], sample['mass_2'])
-    output_sample['symmetric_mass_ratio'] = component_masses_to_symmetric_mass_ratio(sample['mass_1'], sample['mass_2'])
-    output_sample['mass_ratio'] = component_masses_to_mass_ratio(sample['mass_1'], sample['mass_2'])
+    output_sample['chirp_mass'] =\
+        component_masses_to_chirp_mass(sample['mass_1'], sample['mass_2'])
+    output_sample['total_mass'] =\
+        component_masses_to_total_mass(sample['mass_1'], sample['mass_2'])
+    output_sample['symmetric_mass_ratio'] =\
+        component_masses_to_symmetric_mass_ratio(sample['mass_1'],
+                                                 sample['mass_2'])
+    output_sample['mass_ratio'] =\
+        component_masses_to_mass_ratio(sample['mass_1'], sample['mass_2'])
 
     output_sample['cos_tilt_1'] = np.cos(output_sample['tilt_1'])
     output_sample['cos_tilt_2'] = np.cos(output_sample['tilt_2'])
     output_sample['cos_iota'] = np.cos(output_sample['iota'])
 
-    output_sample['redshift'] = luminosity_distance_to_redshift(sample['luminosity_distance'])
+    output_sample['redshift'] =\
+        luminosity_distance_to_redshift(sample['luminosity_distance'])
     return output_sample
 
 
@@ -592,7 +581,8 @@ def generate_component_spins(sample):
     Parameters
     ----------
     sample: A dictionary with the necessary spin conversion parameters:
-    'iota', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1', 'mass_2', 'reference_frequency', 'phase'
+    'iota', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1',
+    'mass_2', 'reference_frequency', 'phase'
 
     Returns
     -------
@@ -600,45 +590,59 @@ def generate_component_spins(sample):
 
     """
     output_sample = sample.copy()
-    spin_conversion_parameters = ['iota', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1',
-                                  'mass_2', 'reference_frequency', 'phase']
+    spin_conversion_parameters =\
+        ['iota', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1',
+         'mass_2', 'reference_frequency', 'phase']
     if all(key in output_sample.keys() for key in spin_conversion_parameters)\
             and isinstance(output_sample, dict):
-        output_sample['iota'], output_sample['spin_1x'], output_sample['spin_1y'], output_sample['spin_1z'], \
-            output_sample['spin_2x'], output_sample['spin_2y'], output_sample['spin_2z'] = \
+        output_sample['iota'], output_sample['spin_1x'],\
+            output_sample['spin_1y'], output_sample['spin_1z'], \
+            output_sample['spin_2x'], output_sample['spin_2y'],\
+            output_sample['spin_2z'] =\
             lalsim.SimInspiralTransformPrecessingNewInitialConditions(
                 output_sample['iota'], output_sample['phi_jl'],
                 output_sample['tilt_1'], output_sample['tilt_2'],
-                output_sample['phi_12'], output_sample['a_1'], output_sample['a_2'],
+                output_sample['phi_12'], output_sample['a_1'],
+                output_sample['a_2'],
                 output_sample['mass_1'] * tupak.core.utils.solar_mass,
                 output_sample['mass_2'] * tupak.core.utils.solar_mass,
                 output_sample['reference_frequency'], output_sample['phase'])
 
-        output_sample['phi_1'] = np.arctan(output_sample['spin_1y'] / output_sample['spin_1x'])
-        output_sample['phi_2'] = np.arctan(output_sample['spin_2y'] / output_sample['spin_2x'])
+        output_sample['phi_1'] =\
+            np.arctan(output_sample['spin_1y'] / output_sample['spin_1x'])
+        output_sample['phi_2'] =\
+            np.arctan(output_sample['spin_2y'] / output_sample['spin_2x'])
 
     elif all(key in output_sample.keys() for key in spin_conversion_parameters)\
             and isinstance(output_sample, pd.DataFrame):
         logger.debug('Extracting component spins.')
-        new_spin_parameters = ['spin_1x', 'spin_1y', 'spin_1z', 'spin_2x', 'spin_2y', 'spin_2z']
-        new_spins = {name: np.zeros(len(output_sample)) for name in new_spin_parameters}
+        new_spin_parameters =\
+            ['spin_1x', 'spin_1y', 'spin_1z', 'spin_2x', 'spin_2y', 'spin_2z']
+        new_spins =\
+            {name: np.zeros(len(output_sample)) for name in new_spin_parameters}
 
         for ii in range(len(output_sample)):
-            new_spins['iota'], new_spins['spin_1x'][ii], new_spins['spin_1y'][ii], new_spins['spin_1z'][ii], \
-                new_spins['spin_2x'][ii], new_spins['spin_2y'][ii], new_spins['spin_2z'][ii] = \
+            new_spins['iota'], new_spins['spin_1x'][ii],\
+                new_spins['spin_1y'][ii], new_spins['spin_1z'][ii], \
+                new_spins['spin_2x'][ii], new_spins['spin_2y'][ii],\
+                new_spins['spin_2z'][ii] =\
                 lalsim.SimInspiralTransformPrecessingNewInitialConditions(
                     output_sample['iota'][ii], output_sample['phi_jl'][ii],
                     output_sample['tilt_1'][ii], output_sample['tilt_2'][ii],
-                    output_sample['phi_12'][ii], output_sample['a_1'][ii], output_sample['a_2'][ii],
+                    output_sample['phi_12'][ii], output_sample['a_1'][ii],
+                    output_sample['a_2'][ii],
                     output_sample['mass_1'][ii] * tupak.core.utils.solar_mass,
                     output_sample['mass_2'][ii] * tupak.core.utils.solar_mass,
-                    output_sample['reference_frequency'][ii], output_sample['phase'][ii])
+                    output_sample['reference_frequency'][ii],
+                    output_sample['phase'][ii])
 
         for name in new_spin_parameters:
             output_sample[name] = new_spins[name]
 
-        output_sample['phi_1'] = np.arctan(output_sample['spin_1y'] / output_sample['spin_1x'])
-        output_sample['phi_2'] = np.arctan(output_sample['spin_2y'] / output_sample['spin_2x'])
+        output_sample['phi_1'] =\
+            np.arctan(output_sample['spin_1y'] / output_sample['spin_1x'])
+        output_sample['phi_2'] =\
+            np.arctan(output_sample['spin_2y'] / output_sample['spin_2x'])
 
     else:
         logger.warning("Component spin extraction failed.")
@@ -647,7 +651,9 @@ def generate_component_spins(sample):
 
 
 def compute_snrs(sample, likelihood):
-    """Compute the optimal and matched filter snrs of all posterior samples and print it out.
+    """
+    Compute the optimal and matched filter snrs of all posterior samples
+    and print it out.
 
     Parameters
     ----------
@@ -662,39 +668,45 @@ def compute_snrs(sample, likelihood):
         if isinstance(temp_sample, dict):
             for key in likelihood.waveform_generator.parameters.keys():
                 likelihood.waveform_generator.parameters[key] = temp_sample[key]
-            signal_polarizations = likelihood.waveform_generator.frequency_domain_strain()
-            for interferometer in likelihood.interferometers:
-                signal = interferometer.get_detector_response(signal_polarizations,
-                                                              likelihood.waveform_generator.parameters)
-                sample['{}_matched_filter_snr'.format(interferometer.name)] = \
-                    interferometer.matched_filter_snr_squared(signal=signal) ** 0.5
-                sample['{}_optimal_snr'.format(interferometer.name)] = \
-                    interferometer.optimal_snr_squared(signal=signal) ** 0.5
+            signal_polarizations =\
+                likelihood.waveform_generator.frequency_domain_strain()
+            for ifo in likelihood.interferometers:
+                signal = ifo.get_detector_response(
+                    signal_polarizations,
+                    likelihood.waveform_generator.parameters)
+                sample['{}_matched_filter_snr'.format(ifo.name)] =\
+                    ifo.matched_filter_snr_squared(signal=signal) ** 0.5
+                sample['{}_optimal_snr'.format(ifo.name)] = \
+                    ifo.optimal_snr_squared(signal=signal) ** 0.5
         else:
-            logger.info('Computing SNRs for every sample, this may take some time.')
+            logger.info(
+                'Computing SNRs for every sample, this may take some time.')
             all_interferometers = likelihood.interferometers
-            matched_filter_snrs = {interferometer.name: [] for interferometer in all_interferometers}
-            optimal_snrs = {interferometer.name: [] for interferometer in all_interferometers}
+            matched_filter_snrs = {ifo.name: [] for ifo in all_interferometers}
+            optimal_snrs = {ifo.name: [] for ifo in all_interferometers}
             for ii in range(len(temp_sample)):
-                for key in set(temp_sample.keys()).intersection(likelihood.waveform_generator.parameters.keys()):
-                    likelihood.waveform_generator.parameters[key] = temp_sample[key][ii]
-                if likelihood.waveform_generator.non_standard_sampling_parameter_keys is not None:
-                    for key in likelihood.waveform_generator.non_standard_sampling_parameter_keys:
-                        likelihood.waveform_generator.parameters[key] = temp_sample[key][ii]
-                signal_polarizations = likelihood.waveform_generator.frequency_domain_strain()
-                for interferometer in all_interferometers:
-                    signal = interferometer.get_detector_response(signal_polarizations,
-                                                                  likelihood.waveform_generator.parameters)
-                    matched_filter_snrs[interferometer.name]\
-                        .append(interferometer.matched_filter_snr_squared(signal=signal) ** 0.5)
-                    optimal_snrs[interferometer.name].append(interferometer.optimal_snr_squared(signal=signal) ** 0.5)
-
-            for interferometer in likelihood.interferometers:
-                sample['{}_matched_filter_snr'.format(interferometer.name)] = matched_filter_snrs[interferometer.name]
-                sample['{}_optimal_snr'.format(interferometer.name)] = optimal_snrs[interferometer.name]
+                for key in set(temp_sample.keys()).intersection(
+                        likelihood.waveform_generator.parameters.keys()):
+                    likelihood.waveform_generator.parameters[key] =\
+                        temp_sample[key][ii]
+                signal_polarizations =\
+                    likelihood.waveform_generator.frequency_domain_strain()
+                for ifo in all_interferometers:
+                    signal = ifo.get_detector_response(
+                        signal_polarizations,
+                        likelihood.waveform_generator.parameters)
+                    matched_filter_snrs[ifo.name].append(
+                        ifo.matched_filter_snr_squared(signal=signal) ** 0.5)
+                    optimal_snrs[ifo.name].append(
+                        ifo.optimal_snr_squared(signal=signal) ** 0.5)
+
+            for ifo in likelihood.interferometers:
+                sample['{}_matched_filter_snr'.format(ifo.name)] =\
+                    matched_filter_snrs[ifo.name]
+                sample['{}_optimal_snr'.format(ifo.name)] =\
+                    optimal_snrs[ifo.name]
 
             likelihood.interferometers = all_interferometers
-            print([interferometer.name for interferometer in likelihood.interferometers])
 
     else:
         logger.debug('Not computing SNRs.')