diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index b583fe99f65618ad741c23eba6dacc0ac2f6a6b2..e3843f1983639a2d060539b117f8ebc3c22756dd 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -79,6 +79,28 @@ python-3.7: - coverage_badge.svg - docs/_build/html/ +# Tests run at a fixed schedule rather than on push +scheduled-python-3.7: + stage: test + image: bilbydev/bilby-test-suite-python37 + only: + - schedules + before_script: + # Install the dependencies specified in the Pipfile + - pipenv install --three --python=/opt/conda/bin/python --system --deploy + script: + - python setup.py install + + # Run pyflakes + - flake8 . + + # Run tests + - pytest + + # Run tests which are only done on schedule + - pytest test/example_test.py + - pytest test/gw_example_test.py + pages: stage: deploy dependencies: diff --git a/CHANGELOG.md b/CHANGELOG.md index 5d30ca96f4a6f2a22b87bf040cf9a6717c942016..e895e5f50f7d1d39311fccf115a6768fac30e4be 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -14,6 +14,7 @@ ## [0.4.0] 2019-02-15 ### Changed +- Changed the logic around redundancy tests in the `PriorDict` classes - Fixed an accidental addition of astropy as a first-class dependency and added a check for missing dependencies to the C.I. - Fixed a bug in the "create-your-own-time-domain-model" example - Added citation guide to the readme @@ -33,7 +34,7 @@ - Improve the load_data_from_cache_file method ### Removed -- +- Removed deprecated `PriorSet` classes. Use `PriorDict` instead. ## [0.3.5] 2019-01-25 diff --git a/bilby/core/prior.py b/bilby/core/prior.py index 228148d6c11dae4671d6b424c09e7959a0fe469b..88ca370832769482cdab9881c0c0bbb862f2b708 100644 --- a/bilby/core/prior.py +++ b/bilby/core/prior.py @@ -245,10 +245,28 @@ class PriorDict(OrderedDict): """ return [self[key].rescale(sample) for key, sample in zip(keys, theta)] - def test_redundancy(self, key): + def test_redundancy(self, key, disable_logging=False): """Empty redundancy test, should be overwritten in subclasses""" return False + def test_has_redundant_keys(self): + """ + Test whether there are redundant keys in self. + + Return + ------ + bool: Whether there are redundancies or not + """ + redundant = False + for key in self: + temp = self.copy() + del temp[key] + if temp.test_redundancy(key, disable_logging=True): + logger.warning('{} is a redundant key in this {}.' + .format(key, self.__class__.__name__)) + redundant = True + return redundant + def copy(self): """ We have to overwrite the copy method as it fails due to the presence of diff --git a/bilby/core/result.py b/bilby/core/result.py index 5c95f1e834fc7eb0b43f2c28d7a5b38335d1d725..3813e664eb753fad4516463720aa1c95beeb17db 100644 --- a/bilby/core/result.py +++ b/bilby/core/result.py @@ -8,6 +8,7 @@ import numpy as np import deepdish import pandas as pd import corner +import json import scipy.stats import matplotlib import matplotlib.pyplot as plt @@ -19,7 +20,7 @@ from .utils import (logger, infer_parameters_from_function, from .prior import Prior, PriorDict, DeltaFunction -def result_file_name(outdir, label): +def result_file_name(outdir, label, extension='json'): """ Returns the standard filename used for a result file Parameters @@ -28,17 +29,27 @@ def result_file_name(outdir, label): Name of the output directory label: str Naming scheme of the output file + extension: str, optional + Whether to save as `hdf5` or `json` Returns ------- str: File name of the output file """ - return '{}/{}_result.h5'.format(outdir, label) + if extension == 'hdf5': + return '{}/{}_result.h5'.format(outdir, label) + else: + return '{}/{}_result.json'.format(outdir, label) def read_in_result(filename=None, outdir=None, label=None): - """ Wrapper to bilby.core.result.Result.from_hdf5 """ - return Result.from_hdf5(filename=filename, outdir=outdir, label=label) + """ Wrapper to bilby.core.result.Result.from_hdf5 + or bilby.core.result.Result.from_json """ + try: + result = Result.from_json(filename=filename, outdir=outdir, label=label) + except (IOError, ValueError): + result = Result.from_hdf5(filename=filename, outdir=outdir, label=label) + return result class Result(object): @@ -155,7 +166,7 @@ class Result(object): if (outdir is None) and (label is None): raise ValueError("No information given to load file") else: - filename = result_file_name(outdir, label) + filename = result_file_name(outdir, label, extension='hdf5') if os.path.isfile(filename): dictionary = deepdish.io.load(filename) # Some versions of deepdish/pytables return the dictionanary as @@ -169,6 +180,50 @@ class Result(object): else: raise IOError("No result '{}' found".format(filename)) + @classmethod + def from_json(cls, filename=None, outdir=None, label=None): + """ Read in a saved .json data file + + Parameters + ---------- + filename: str + If given, try to load from this filename + outdir, label: str + If given, use the default naming convention for saved results file + + Returns + ------- + result: bilby.core.result.Result + + Raises + ------- + ValueError: If no filename is given and either outdir or label is None + If no bilby.core.result.Result is found in the path + + """ + if filename is None: + if (outdir is None) and (label is None): + raise ValueError("No information given to load file") + else: + filename = result_file_name(outdir, label) + if os.path.isfile(filename): + dictionary = json.load(open(filename, 'r')) + for key in dictionary.keys(): + # Convert some dictionaries back to DataFrames + if key in ['posterior', 'nested_samples']: + dictionary[key] = pd.DataFrame.from_dict(dictionary[key]) + # Convert the loaded priors to bilby prior type + if key == 'priors': + for param in dictionary[key].keys(): + dictionary[key][param] = str(dictionary[key][param]) + dictionary[key] = PriorDict(dictionary[key]) + try: + return cls(**dictionary) + except TypeError as e: + raise IOError("Unable to load dictionary, error={}".format(e)) + else: + raise IOError("No result '{}' found".format(filename)) + def __str__(self): """Print a summary """ if getattr(self, 'posterior', None) is not None: @@ -303,9 +358,9 @@ class Result(object): pass return dictionary - def save_to_file(self, overwrite=False, outdir=None): + def save_to_file(self, overwrite=False, outdir=None, extension='json'): """ - Writes the Result to a deepdish h5 file + Writes the Result to a json or deepdish h5 file Parameters ---------- @@ -314,9 +369,11 @@ class Result(object): default=False outdir: str, optional Path to the outdir. Default is the one stored in the result object. + extension: str, optional + Whether to save as hdf5 instead of json """ outdir = self._safe_outdir_creation(outdir, self.save_to_file) - file_name = result_file_name(outdir, self.label) + file_name = result_file_name(outdir, self.label, extension) if os.path.isfile(file_name): if overwrite: @@ -341,8 +398,19 @@ class Result(object): if hasattr(dictionary['sampler_kwargs'][key], '__call__'): dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs']) + # Convert to json saveable format + if extension != 'hdf5': + for key in dictionary.keys(): + if isinstance(dictionary[key], pd.core.frame.DataFrame): + dictionary[key] = dictionary[key].to_dict() + elif isinstance(dictionary[key], np.ndarray): + dictionary[key] = dictionary[key].tolist() + try: - deepdish.io.save(file_name, dictionary) + if extension == 'hdf5': + deepdish.io.save(file_name, dictionary) + else: + json.dump(dictionary, open(file_name, 'w'), indent=2) except Exception as e: logger.error("\n\n Saving the data has failed with the " "following message:\n {} \n\n".format(e)) diff --git a/bilby/core/sampler/__init__.py b/bilby/core/sampler/__init__.py index 7a15b410cb1fb9ef4d425610a16bbd3c9d4ccc3b..147d95c5d43001dfb618dd77a8ced8a6e7c39258 100644 --- a/bilby/core/sampler/__init__.py +++ b/bilby/core/sampler/__init__.py @@ -85,6 +85,7 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir', overwritten. save: bool If true, save the priors and results to disk. + If hdf5, save as an hdf5 file instead of json. result_class: bilby.core.result.Result, or child of The result class to use. By default, `bilby.core.result.Result` is used, but objects which inherit from this class can be given providing @@ -183,7 +184,10 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir', result.samples_to_posterior(likelihood=likelihood, priors=priors, conversion_function=conversion_function) - if save: + if save == 'hdf5': + result.save_to_file(extension='hdf5') + logger.info("Results saved to {}/".format(outdir)) + elif save: result.save_to_file() logger.info("Results saved to {}/".format(outdir)) if plot: diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py index 20f4366668dd29cc7b99a0ebc5c924cbe3ccd835..c07f208aec77fa1d27c41501d3c3833776f3d556 100644 --- a/bilby/core/sampler/base_sampler.py +++ b/bilby/core/sampler/base_sampler.py @@ -241,6 +241,10 @@ class Sampler(object): Likelihood can't be evaluated. """ + + if self.priors.test_has_redundant_keys(): + raise IllegalSamplingSetError("Your sampling set contains redundant parameters.") + self._check_if_priors_can_be_sampled() try: t1 = datetime.datetime.now() @@ -502,3 +506,7 @@ class SamplerError(Error): class SamplerNotInstalledError(SamplerError): """ Base class for Error raised by not installed samplers """ + + +class IllegalSamplingSetError(Error): + """ Class for illegal sets of sampling parameters """ diff --git a/bilby/gw/conversion.py b/bilby/gw/conversion.py index ea5853d55eeac0440eae8cae539898fe9030ac10..eb55e3c9957a5b9649c07fa17f58e4b60fc1da47 100644 --- a/bilby/gw/conversion.py +++ b/bilby/gw/conversion.py @@ -215,7 +215,7 @@ def convert_to_lal_binary_black_hole_parameters(parameters): converted_parameters['phi_jl'] = 0.0 converted_parameters['phi_12'] = 0.0 - for angle in ['tilt_1', 'tilt_2', 'iota']: + for angle in ['tilt_1', 'tilt_2', 'theta_jn']: cos_angle = str('cos_' + angle) if cos_angle in converted_parameters.keys(): converted_parameters[angle] =\ @@ -827,7 +827,7 @@ def generate_component_spins(sample): Parameters ---------- sample: A dictionary with the necessary spin conversion parameters: - 'iota', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1', + 'theta_jn', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1', 'mass_2', 'reference_frequency', 'phase' Returns @@ -837,7 +837,7 @@ def generate_component_spins(sample): """ output_sample = sample.copy() spin_conversion_parameters =\ - ['iota', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1', + ['theta_jn', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1', 'mass_2', 'reference_frequency', 'phase'] if all(key in output_sample.keys() for key in spin_conversion_parameters): output_sample['iota'], output_sample['spin_1x'],\ @@ -845,7 +845,7 @@ def generate_component_spins(sample): output_sample['spin_2x'], output_sample['spin_2y'],\ output_sample['spin_2z'] =\ transform_precessing_spins( - output_sample['iota'], output_sample['phi_jl'], + output_sample['theta_jn'], output_sample['phi_jl'], output_sample['tilt_1'], output_sample['tilt_2'], output_sample['phi_12'], output_sample['a_1'], output_sample['a_2'], diff --git a/bilby/gw/detector.py b/bilby/gw/detector.py index 9b01722dc445c8c0c1cea58b12ead3a864045cde..2d68559921f0c696e386c92be7a5b29af2ccf7d3 100644 --- a/bilby/gw/detector.py +++ b/bilby/gw/detector.py @@ -438,7 +438,9 @@ class InterferometerStrainData(object): strain = strain.filter(bp, filtfilt=True) self._time_domain_strain = strain.value - def create_power_spectral_density(self, fft_length, name='unknown', outdir=None): + def create_power_spectral_density( + self, fft_length, overlap=0, name='unknown', outdir=None, + analysis_segment_start_time=None): """ Use the time domain strain to generate a power spectral density This create a Tukey-windowed power spectral density and writes it to a @@ -448,12 +450,17 @@ class InterferometerStrainData(object): ---------- fft_length: float Duration of the analysis segment. + overlap: float + Number of seconds of overlap between FFTs. name: str The name of the detector, used in storing the PSD. Defaults to "unknown". outdir: str The output directory to write the PSD file too. If not given, the PSD will not be written to file. + analysis_segment_start_time: float + The start time of the analysis segment, if given, this data will + be removed before creating the PSD. Returns ------- @@ -461,11 +468,28 @@ class InterferometerStrainData(object): The frequencies and power spectral density array """ - strain = gwpy.timeseries.TimeSeries(self.time_domain_strain, sample_rate=self.sampling_frequency) + + data = self.time_domain_strain + + if analysis_segment_start_time is not None: + analysis_segment_end_time = analysis_segment_start_time + fft_length + inside = (analysis_segment_start_time > self.time_array[0] + + analysis_segment_end_time < self.time_array[-1]) + if inside: + logger.info("Removing analysis segment data from the PSD data") + idxs = ( + (self.time_array < analysis_segment_start_time) + + (self.time_array > analysis_segment_end_time)) + data = data[idxs] + + # WARNING this line can cause issues if the data is non-contiguous + strain = gwpy.timeseries.TimeSeries(data=data, sample_rate=self.sampling_frequency) psd_alpha = 2 * self.roll_off / fft_length - logger.info("Creating PSD with non-overlapping tukey window, alpha={}, roll off={}".format( - psd_alpha, self.roll_off)) - psd = strain.psd(fftlength=fft_length, overlap=0, window=('tukey', psd_alpha)) + logger.info( + "Tukey window PSD data with alpha={}, roll off={}".format( + psd_alpha, self.roll_off)) + psd = strain.psd( + fftlength=fft_length, overlap=overlap, window=('tukey', psd_alpha)) if outdir: psd_file = '{}/{}_PSD_{}_{}.txt'.format(outdir, name, self.start_time, self.duration) @@ -1801,7 +1825,8 @@ class PowerSpectralDensity(object): @staticmethod def from_frame_file(frame_file, psd_start_time, psd_duration, fft_length=4, sampling_frequency=4096, roll_off=0.2, - channel=None): + overlap=0, channel=None, name=None, outdir=None, + analysis_segment_start_time=None): """ Generate power spectral density from a frame file Parameters @@ -1819,15 +1844,25 @@ class PowerSpectralDensity(object): This is twice the maximum frequency. roll_off: float, optional Rise time in seconds of tukey window. + overlap: float, + Number of seconds of overlap between FFTs. channel: str, optional Name of channel to use to generate PSD. + name, outdir: str, optional + Name (and outdir) of the detector for which a PSD is to be + generated. + analysis_segment_start_time: float, optional + The start time of the analysis segment, if given, this data will + be removed before creating the PSD. """ strain = InterferometerStrainData(roll_off=roll_off) strain.set_from_frame_file( frame_file, start_time=psd_start_time, duration=psd_duration, channel=channel, sampling_frequency=sampling_frequency) - frequency_array, psd_array = strain.create_power_spectral_density(fft_length=fft_length) + frequency_array, psd_array = strain.create_power_spectral_density( + fft_length=fft_length, name=name, outdir=outdir, overlap=overlap, + analysis_segment_start_time=analysis_segment_start_time) return PowerSpectralDensity(frequency_array=frequency_array, psd_array=psd_array) @staticmethod @@ -2256,23 +2291,30 @@ def get_event_data( def load_data_from_cache_file( - cache_file, start_time, segment_duration, psd_duration, - channel_name=None, sampling_frequency=4096): + cache_file, start_time, segment_duration, psd_duration, psd_start_time, + channel_name=None, sampling_frequency=4096, roll_off=0.2, + overlap=0, outdir=None): """ Helper routine to generate an interferometer from a cache file Parameters ---------- cache_file: str Path to the location of the cache file - start_time: float - GPS start time of the segment + start_time, psd_start_time: float + GPS start time of the segment and data stretch used for the PSD segment_duration, psd_duration: float Segment duration and duration of data to use to generate the PSD (in seconds). + roll_off: float, optional + Rise time in seconds of tukey window. + overlap: float, + Number of seconds of overlap between FFTs. channel_name: str Channel name sampling_frequency: int Sampling frequency + outdir: str, optional + The output directory in which the data is saved Returns ------- @@ -2283,7 +2325,6 @@ def load_data_from_cache_file( data_set = False psd_set = False - psd_start_time = start_time - psd_duration with open(cache_file, 'r') as ff: for line in ff: @@ -2307,10 +2348,17 @@ def load_data_from_cache_file( if not psd_set & psd_in_cache: ifo.power_spectral_density = \ PowerSpectralDensity.from_frame_file( - cache.path, psd_start_time=psd_start_time, + cache.path, + psd_start_time=psd_start_time, psd_duration=psd_duration, + fft_length=segment_duration, + sampling_frequency=sampling_frequency, + roll_off=roll_off, + overlap=overlap, channel=channel_name, - sampling_frequency=sampling_frequency) + name=cache.observatory, + outdir=outdir, + analysis_segment_start_time=start_time) psd_set = True if data_set and psd_set: return ifo diff --git a/bilby/gw/likelihood.py b/bilby/gw/likelihood.py index 1758efbd3978f907367e823878f3d09a320910ab..43d7fcf7a83cdcd94158dbf0f246cea8a6fbf5ec 100644 --- a/bilby/gw/likelihood.py +++ b/bilby/gw/likelihood.py @@ -412,10 +412,13 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient): """ def __init__(self, interferometers, waveform_generator, - linear_matrix, quadratic_matrix, priors): + linear_matrix, quadratic_matrix, priors, + distance_marginalization=False, phase_marginalization=False): GravitationalWaveTransient.__init__( self, interferometers=interferometers, - waveform_generator=waveform_generator, priors=priors) + waveform_generator=waveform_generator, priors=priors, + distance_marginalization=distance_marginalization, + phase_marginalization=phase_marginalization) if isinstance(linear_matrix, str): logger.info("Loading linear matrix from {}".format(linear_matrix)) @@ -434,7 +437,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient): def log_likelihood_ratio(self): optimal_snr_squared = 0. - matched_filter_snr_squared = 0. + d_inner_h = 0. indices, in_bounds = self._closest_time_indices( self.parameters['geocent_time'] - self.interferometers.start_time) @@ -470,19 +473,27 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient): if not in_bounds: return np.nan_to_num(-np.inf) - matched_filter_snr_squared_array = np.einsum( + d_inner_h_tc_array = np.einsum( 'i,ji->j', np.conjugate(h_plus_linear + h_cross_linear), self.weights[ifo.name + '_linear'][indices]) - matched_filter_snr_squared += interp1d( + d_inner_h += interp1d( self.time_samples[indices], - matched_filter_snr_squared_array, kind='quadratic')(ifo_time) + d_inner_h_tc_array, kind='quadratic')(ifo_time) optimal_snr_squared += \ np.vdot(np.abs(h_plus_quadratic + h_cross_quadratic)**2, self.weights[ifo.name + '_quadratic']) - log_l = matched_filter_snr_squared - optimal_snr_squared / 2 + if self.distance_marginalization: + rho_mf_ref, rho_opt_ref = self._setup_rho(d_inner_h, optimal_snr_squared) + if self.phase_marginalization: + rho_mf_ref = abs(rho_mf_ref) + log_l = self._interp_dist_margd_loglikelihood(rho_mf_ref.real, rho_opt_ref)[0] + else: + if self.phase_marginalization: + d_inner_h = self._bessel_function_interped(abs(d_inner_h)) + log_l = d_inner_h - optimal_snr_squared / 2 return log_l.real diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py index 68f8b34508985dbf2c3cc8a531c7514e5c8cdb42..99c353b44a2dd4ebc4b73669a483b2a2438b4e88 100644 --- a/bilby/gw/prior.py +++ b/bilby/gw/prior.py @@ -207,63 +207,48 @@ class BBHPriorDict(PriorDict): filename = os.path.join(os.path.dirname(__file__), 'prior_files', filename) PriorDict.__init__(self, dictionary=dictionary, filename=filename) - def test_redundancy(self, key): + def test_redundancy(self, key, disable_logging=False): """ Test whether adding the key would add be redundant. + Already existing keys return True. Parameters ---------- key: str The key to test. + disable_logging: bool, optional + Disable logging in this function call. Default is False. Return ------ redundant: bool Whether the key is redundant or not """ - redundant = False if key in self: logger.debug('{} already in prior'.format(key)) - return redundant + return True + mass_parameters = {'mass_1', 'mass_2', 'chirp_mass', 'total_mass', 'mass_ratio', 'symmetric_mass_ratio'} - spin_magnitude_parameters = {'a_1', 'a_2'} spin_tilt_1_parameters = {'tilt_1', 'cos_tilt_1'} spin_tilt_2_parameters = {'tilt_2', 'cos_tilt_2'} spin_azimuth_parameters = {'phi_1', 'phi_2', 'phi_12', 'phi_jl'} - inclination_parameters = {'iota', 'cos_iota'} + inclination_parameters = {'theta_jn', 'cos_theta_jn'} distance_parameters = {'luminosity_distance', 'comoving_distance', 'redshift'} - for parameter_set in [mass_parameters, spin_magnitude_parameters, spin_azimuth_parameters]: - if key in parameter_set: - if len(parameter_set.intersection(self)) > 2: - redundant = True - logger.warning('{} in prior. This may lead to unexpected behaviour.'.format( - parameter_set.intersection(self))) - break - elif len(parameter_set.intersection(self)) == 2: - redundant = True - break - for parameter_set in [inclination_parameters, distance_parameters, spin_tilt_1_parameters, - spin_tilt_2_parameters]: + for independent_parameters, parameter_set in \ + zip([2, 2, 1, 1, 1, 1], + [mass_parameters, spin_azimuth_parameters, + spin_tilt_1_parameters, spin_tilt_2_parameters, + inclination_parameters, distance_parameters]): if key in parameter_set: - if len(parameter_set.intersection(self)) > 1: - redundant = True - logger.warning('{} in prior. This may lead to unexpected behaviour.'.format( - parameter_set.intersection(self))) - break - elif len(parameter_set.intersection(self)) == 1: - redundant = True - break - - return redundant - - -class BBHPriorSet(BBHPriorDict): - - def __init__(self, dictionary=None, filename=None): - """ DEPRECATED: USE BBHPriorDict INSTEAD""" - logger.warning("The name 'BBHPriorSet' is deprecated use 'BBHPriorDict' instead") - super(BBHPriorSet, self).__init__(dictionary, filename) + if len(parameter_set.intersection(self)) >= independent_parameters: + logger.disabled = disable_logging + logger.warning('{} already in prior. ' + 'This may lead to unexpected behaviour.' + .format(parameter_set.intersection(self))) + logger.disabled = False + return True + return False class BNSPriorDict(PriorDict): @@ -286,34 +271,32 @@ class BNSPriorDict(PriorDict): filename = os.path.join(os.path.dirname(__file__), 'prior_files', filename) PriorDict.__init__(self, dictionary=dictionary, filename=filename) - def test_redundancy(self, key): - logger.info("Performing redundancy check using BBHPriorDict().test_redundancy") - bbh_redundancy = BBHPriorDict().test_redundancy(key) + def test_redundancy(self, key, disable_logging=False): + logger.disabled = disable_logging + logger.info("Performing redundancy check using BBHPriorDict(self).test_redundancy") + logger.disabled = False + bbh_redundancy = BBHPriorDict(self).test_redundancy(key) + if bbh_redundancy: return True redundant = False - tidal_parameters =\ + tidal_parameters = \ {'lambda_1', 'lambda_2', 'lambda_tilde', 'delta_lambda'} if key in tidal_parameters: if len(tidal_parameters.intersection(self)) > 2: redundant = True - logger.warning('{} in prior. This may lead to unexpected behaviour.'.format( - tidal_parameters.intersection(self))) + logger.disabled = disable_logging + logger.warning('{} already in prior. ' + 'This may lead to unexpected behaviour.' + .format(tidal_parameters.intersection(self))) + logger.disabled = False elif len(tidal_parameters.intersection(self)) == 2: redundant = True return redundant -class BNSPriorSet(BNSPriorDict): - - def __init__(self, dictionary=None, filename=None): - """ DEPRECATED: USE BNSPriorDict INSTEAD""" - super(BNSPriorSet, self).__init__(dictionary, filename) - logger.warning("The name 'BNSPriorSet' is deprecated use 'BNSPriorDict' instead") - - Prior._default_latex_labels = { 'mass_1': '$m_1$', 'mass_2': '$m_2$', @@ -334,6 +317,8 @@ Prior._default_latex_labels = { 'ra': '$\mathrm{RA}$', 'iota': '$\iota$', 'cos_iota': '$\cos\iota$', + 'theta_jn': '$\\theta_{JN}$', + 'cos_theta_jn': '$\cos\\theta_{JN}$', 'psi': '$\psi$', 'phase': '$\phi$', 'geocent_time': '$t_c$', @@ -418,13 +403,13 @@ class CalibrationPriorDict(PriorDict): nodes = np.logspace(np.log10(minimum_frequency), np.log10(maximum_frequency), n_nodes) - amplitude_mean_nodes =\ + amplitude_mean_nodes = \ UnivariateSpline(frequency_array, amplitude_median)(nodes) - amplitude_sigma_nodes =\ + amplitude_sigma_nodes = \ UnivariateSpline(frequency_array, amplitude_sigma)(nodes) - phase_mean_nodes =\ + phase_mean_nodes = \ UnivariateSpline(frequency_array, phase_median)(nodes) - phase_sigma_nodes =\ + phase_sigma_nodes = \ UnivariateSpline(frequency_array, phase_sigma)(nodes) prior = CalibrationPriorDict() @@ -506,11 +491,3 @@ class CalibrationPriorDict(PriorDict): latex_label=latex_label) return prior - - -class CalibrationPriorSet(CalibrationPriorDict): - - def __init__(self, dictionary=None, filename=None): - """ DEPRECATED: USE BNSPriorDict INSTEAD""" - super(CalibrationPriorSet, self).__init__(dictionary, filename) - logger.warning("The name 'CalibrationPriorSet' is deprecated use 'CalibrationPriorDict' instead") diff --git a/bilby/gw/prior_files/GW150914.prior b/bilby/gw/prior_files/GW150914.prior index 35b12524c498e5a21127e91c74472c9dffe48430..0eef13a9734f8f0e37dc6c578e3d3a0721e28dad 100644 --- a/bilby/gw/prior_files/GW150914.prior +++ b/bilby/gw/prior_files/GW150914.prior @@ -10,7 +10,7 @@ phi_jl = Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi) luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=1e3, unit='Mpc') dec = Cosine(name='dec') ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi) -iota = Sine(name='iota') +theta_jn = Sine(name='theta_jn') psi = Uniform(name='psi', minimum=0, maximum=np.pi) phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi) geocent_time = Uniform(1126259462.322, 1126259462.522, name='geocent_time', unit='$s$') diff --git a/bilby/gw/prior_files/binary_black_holes.prior b/bilby/gw/prior_files/binary_black_holes.prior index 5314635bd779f09098e3c8c2002f3367f046547d..e41cc73e2f765fbddd821693604ac15e302586f2 100644 --- a/bilby/gw/prior_files/binary_black_holes.prior +++ b/bilby/gw/prior_files/binary_black_holes.prior @@ -19,7 +19,7 @@ phi_jl = Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi) luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc') dec = Cosine(name='dec') ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi) -iota = Sine(name='iota') -# cos_iota = Uniform(name='cos_iota', minimum=-1, maximum=1) +theta_jn = Sine(name='theta_jn') +# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1) psi = Uniform(name='psi', minimum=0, maximum=np.pi) phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi) diff --git a/bilby/gw/prior_files/binary_neutron_stars.prior b/bilby/gw/prior_files/binary_neutron_stars.prior index 1bc4d485c1cfdf89ddee3ab4b7b33d6cabd80654..08ec88f2ffb8bd6536563cb20723aabb589c7c13 100644 --- a/bilby/gw/prior_files/binary_neutron_stars.prior +++ b/bilby/gw/prior_files/binary_neutron_stars.prior @@ -13,8 +13,8 @@ chi_2 = bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1 luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=10, maximum=500, unit='Mpc') dec = Cosine(name='dec') ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi) -iota = Sine(name='iota') -# cos_iota = Uniform(name='cos_iota', minimum=-1, maximum=1) +theta_jn = Sine(name='theta_jn') +# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1) psi = Uniform(name='psi', minimum=0, maximum=np.pi) phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi) lambda_1 = Uniform(name='lambda_1', minimum=0, maximum=3000 ) diff --git a/bilby/gw/source.py b/bilby/gw/source.py index a3c68a544449ae96108faa5df2a968066062b131..cfc50597c8ea56fdda7c41acc6118af0774b16f0 100644 --- a/bilby/gw/source.py +++ b/bilby/gw/source.py @@ -23,7 +23,7 @@ except ImportError: def lal_binary_black_hole( frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1, - phi_12, a_2, tilt_2, phi_jl, iota, phase, **kwargs): + phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, **kwargs): """ A Binary Black Hole waveform model using lalsimulation Parameters @@ -41,15 +41,16 @@ def lal_binary_black_hole( tilt_1: float Primary tilt angle phi_12: float - + Azimuthal angle between the two component spins a_2: float Dimensionless secondary spin magnitude tilt_2: float Secondary tilt angle phi_jl: float - - iota: float - Orbital inclination + Azimuthal angle between the total binary angular momentum and the + orbital angular momentum + theta_jn: float + Angle between the total binary angular momentum and the line of sight phase: float The phase at coalescence kwargs: dict @@ -65,14 +66,14 @@ def lal_binary_black_hole( waveform_kwargs.update(kwargs) return _base_lal_cbc_fd_waveform( frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2, - luminosity_distance=luminosity_distance, iota=iota, phase=phase, + luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase, a_1=a_1, a_2=a_2, tilt_1=tilt_1, tilt_2=tilt_2, phi_12=phi_12, phi_jl=phi_jl, **waveform_kwargs) def lal_binary_neutron_star( frequency_array, mass_1, mass_2, luminosity_distance, chi_1, chi_2, - iota, phase, lambda_1, lambda_2, **kwargs): + theta_jn, phase, lambda_1, lambda_2, **kwargs): """ A Binary Neutron Star waveform model using lalsimulation Parameters @@ -89,7 +90,7 @@ def lal_binary_neutron_star( Dimensionless aligned spin chi_2: float Dimensionless aligned spin - iota: float + theta_jn: float Orbital inclination phase: float The phase at coalescence @@ -123,16 +124,15 @@ def lal_binary_neutron_star( waveform_kwargs.update(kwargs) return _base_lal_cbc_fd_waveform( frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2, - luminosity_distance=luminosity_distance, iota=iota, phase=phase, + luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase, a_1=a_1, a_2=a_2, tilt_1=tilt_1, tilt_2=tilt_2, lambda_1=lambda_1, lambda_2=lambda_2, **waveform_kwargs) def lal_eccentric_binary_black_hole_no_spins( frequency_array, mass_1, mass_2, eccentricity, luminosity_distance, - iota, phase, **kwargs): - """ - Eccentric binary black hole waveform model using lalsimulation (EccentricFD) + theta_jn, phase, **kwargs): + """ Eccentric binary black hole waveform model using lalsimulation (EccentricFD) Parameters ---------- @@ -146,7 +146,7 @@ def lal_eccentric_binary_black_hole_no_spins( The orbital eccentricity of the system luminosity_distance: float The luminosity distance in megaparsec - iota: float + theta_jn: float Orbital inclination phase: float The phase at coalescence @@ -163,12 +163,12 @@ def lal_eccentric_binary_black_hole_no_spins( waveform_kwargs.update(kwargs) return _base_lal_cbc_fd_waveform( frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2, - luminosity_distance=luminosity_distance, iota=iota, phase=phase, + luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase, eccentricity=eccentricity, **waveform_kwargs) def _base_lal_cbc_fd_waveform( - frequency_array, mass_1, mass_2, luminosity_distance, iota, phase, + frequency_array, mass_1, mass_2, luminosity_distance, theta_jn, phase, a_1=0.0, a_2=0.0, tilt_1=0.0, tilt_2=0.0, phi_12=0.0, phi_jl=0.0, lambda_1=0.0, lambda_2=0.0, eccentricity=0.0, **waveform_kwargs): """ Generate a cbc waveform model using lalsimulation @@ -239,7 +239,7 @@ def _base_lal_cbc_fd_waveform( else: iota, spin_1x, spin_1y, spin_1z, spin_2x, spin_2y, spin_2z = ( transform_precessing_spins( - iota, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1, + theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1, mass_2, reference_frequency, phase)) longitude_ascending_nodes = 0.0 @@ -328,7 +328,7 @@ def supernova_pca_model( def roq(frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1, - phi_12, a_2, tilt_2, phi_jl, iota, phase, **waveform_arguments): + phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, **waveform_arguments): """ See https://git.ligo.org/lscsoft/lalsuite/blob/master/lalsimulation/src/LALSimInspiral.c#L1460 @@ -354,7 +354,7 @@ def roq(frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1, Secondary tilt angle phi_jl: float - iota: float + theta_jn: float Orbital inclination phase: float The phase at coalescence @@ -399,11 +399,12 @@ def roq(frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1, spin_2x = 0 spin_2y = 0 spin_2z = a_2 + iota = theta_jn else: iota, spin_1x, spin_1y, spin_1z, spin_2x, spin_2y, spin_2z = \ - transform_precessing_spins( - iota, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1, mass_2, - reference_frequency, phase) + lalsim_SimInspiralTransformPrecessingNewInitialConditions( + theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1, + mass_2, reference_frequency, phase) chi_1_l, chi_2_l, chi_p, theta_jn, alpha, phase_aligned, zeta =\ lalsim_SimIMRPhenomPCalculateModelParametersFromSourceFrame( diff --git a/bilby/gw/utils.py b/bilby/gw/utils.py index 94c3cafb2c0cdb63a73e72f6cef8db7c9757974a..82d6c57b58fd29ef27e800909caf4e67b8e6f448 100644 --- a/bilby/gw/utils.py +++ b/bilby/gw/utils.py @@ -130,6 +130,7 @@ def get_polarization_tensor(ra, dec, time, psi, mode): elif mode.lower() == 'breathing': return np.einsum('i,j->ij', m, m) + np.einsum('i,j->ij', n, n) + # Calculating omega here to avoid calculation when model in [plus, cross, breathing] omega = np.cross(m, n) if mode.lower() == 'longitudinal': return np.sqrt(2) * np.einsum('i,j->ij', omega, omega) @@ -138,8 +139,7 @@ def get_polarization_tensor(ra, dec, time, psi, mode): elif mode.lower() == 'y': return np.einsum('i,j->ij', n, omega) + np.einsum('i,j->ij', omega, n) else: - logger.warning("{} not a polarization mode!".format(mode)) - return None + raise ValueError("{} not a polarization mode!".format(mode)) def get_vertex_position_geocentric(latitude, longitude, elevation): @@ -380,7 +380,7 @@ def get_open_strain_data( return strain -def read_frame_file(file_name, start_time, end_time, channel=None, buffer_time=1, **kwargs): +def read_frame_file(file_name, start_time, end_time, channel=None, buffer_time=0, **kwargs): """ A function which accesses the open strain data This uses `gwpy` to download the open data and then saves a cached copy for @@ -416,23 +416,22 @@ def read_frame_file(file_name, start_time, end_time, channel=None, buffer_time=1 except RuntimeError: logger.warning('Channel {} not found. Trying preset channel names'.format(channel)) - while not loaded: - ligo_channel_types = ['GDS-CALIB_STRAIN', 'DCS-CALIB_STRAIN_C01', 'DCS-CALIB_STRAIN_C02', - 'DCH-CLEAN_STRAIN_C02'] - virgo_channel_types = ['Hrec_hoft_V1O2Repro2A_16384Hz', 'FAKE_h_16384Hz_4R'] - channel_types = dict(H1=ligo_channel_types, L1=ligo_channel_types, V1=virgo_channel_types) - for detector in channel_types.keys(): - for channel_type in channel_types[detector]: - if loaded: - break - channel = '{}:{}'.format(detector, channel_type) - try: - strain = TimeSeries.read(source=file_name, channel=channel, start=start_time, end=end_time, - **kwargs) - loaded = True - logger.info('Successfully read strain data for channel {}.'.format(channel)) - except RuntimeError: - pass + ligo_channel_types = ['GDS-CALIB_STRAIN', 'DCS-CALIB_STRAIN_C01', 'DCS-CALIB_STRAIN_C02', + 'DCH-CLEAN_STRAIN_C02'] + virgo_channel_types = ['Hrec_hoft_V1O2Repro2A_16384Hz', 'FAKE_h_16384Hz_4R'] + channel_types = dict(H1=ligo_channel_types, L1=ligo_channel_types, V1=virgo_channel_types) + for detector in channel_types.keys(): + for channel_type in channel_types[detector]: + if loaded: + break + channel = '{}:{}'.format(detector, channel_type) + try: + strain = TimeSeries.read(source=file_name, channel=channel, start=start_time, end=end_time, + **kwargs) + loaded = True + logger.info('Successfully read strain data for channel {}.'.format(channel)) + except RuntimeError: + pass if loaded: return strain diff --git a/examples/injection_examples/australian_detector.py b/examples/injection_examples/australian_detector.py index d770af182ce106e4b0e760a78413cb624bdf9aa7..3cd8c4aa94dd039e77644f9e69680892c3b6a147 100644 --- a/examples/injection_examples/australian_detector.py +++ b/examples/injection_examples/australian_detector.py @@ -59,7 +59,7 @@ interferometers.append(AusIFO) # signal at 4 Gpc injection_parameters = dict( mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=0.2108) diff --git a/examples/injection_examples/binary_neutron_star_example.py b/examples/injection_examples/binary_neutron_star_example.py index f1ad6d2d372ec18049630a2b0d92f199c9fa7ad1..cd540368845817ff1b7162d0cf63f5ba427fddf1 100644 --- a/examples/injection_examples/binary_neutron_star_example.py +++ b/examples/injection_examples/binary_neutron_star_example.py @@ -28,7 +28,7 @@ np.random.seed(88170235) # aligned spins of both black holes (chi_1, chi_2), etc. injection_parameters = dict( mass_1=1.5, mass_2=1.3, chi_1=0.02, chi_2=0.02, luminosity_distance=50., - iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, + theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108, lambda_1=400, lambda_2=450) # Set the duration and sampling frequency of the data segment that we're going @@ -66,7 +66,7 @@ interferometers.inject_signal(parameters=injection_parameters, # delta_lambda rather than mass_1, mass_2, lambda_1, and lambda_2. priors = bilby.gw.prior.BNSPriorDict() for key in ['psi', 'geocent_time', 'ra', 'dec', 'chi_1', 'chi_2', - 'iota', 'luminosity_distance', 'phase']: + 'theta_jn', 'luminosity_distance', 'phase']: priors[key] = injection_parameters[key] priors.pop('mass_1') priors.pop('mass_2') diff --git a/examples/injection_examples/calibration_example.py b/examples/injection_examples/calibration_example.py index ec3f3491e9ad61fda38512557d91a5345cf68f2d..ca58994696f4233ceb60d17bf500e144671e6c72 100644 --- a/examples/injection_examples/calibration_example.py +++ b/examples/injection_examples/calibration_example.py @@ -28,7 +28,7 @@ np.random.seed(88170235) # spins of both black holes (a, tilt, phi), etc. injection_parameters = dict( mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) # Fixed arguments passed into the source model diff --git a/examples/injection_examples/change_sampled_parameters.py b/examples/injection_examples/change_sampled_parameters.py index b2c848576bcde36985796e28c206c887411114d3..9f432ef52910fd125b1930ea90420e7eae0b6245 100644 --- a/examples/injection_examples/change_sampled_parameters.py +++ b/examples/injection_examples/change_sampled_parameters.py @@ -22,7 +22,7 @@ np.random.seed(151226) injection_parameters = dict( total_mass=66., mass_ratio=0.9, a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000, iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=2000, theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', @@ -63,8 +63,8 @@ priors['redshift'] = bilby.prior.Uniform( for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', 'ra', 'dec', 'geocent_time', 'phase']: priors[key] = injection_parameters[key] -priors.pop('iota') -priors['cos_iota'] = np.cos(injection_parameters['iota']) +priors.pop('theta_jn') +priors['cos_theta_jn'] = np.cos(injection_parameters['theta_jn']) print(priors) # Initialise GravitationalWaveTransient diff --git a/examples/injection_examples/eccentric_inspiral.py b/examples/injection_examples/eccentric_inspiral.py index ce4635c7b982cc4a44e0f7d976c1b300d0e1bc19..8d3053f353fb769384f25a17c3b1d406860fd88e 100644 --- a/examples/injection_examples/eccentric_inspiral.py +++ b/examples/injection_examples/eccentric_inspiral.py @@ -27,7 +27,7 @@ np.random.seed(150914) injection_parameters = dict( mass_1=35., mass_2=30., eccentricity=0.1, luminosity_distance=440., - iota=0.4, psi=0.1, phase=1.2, geocent_time=1180002601.0, ra=45, dec=5.73) + theta_jn=0.4, psi=0.1, phase=1.2, geocent_time=1180002601.0, ra=45, dec=5.73) waveform_arguments = dict(waveform_approximant='EccentricFD', reference_frequency=10., minimum_frequency=10.) @@ -70,7 +70,7 @@ priors["luminosity_distance"] = bilby.gw.prior.UniformComovingVolume( priors["dec"] = bilby.core.prior.Cosine(name='dec') priors["ra"] = bilby.core.prior.Uniform( name='ra', minimum=0, maximum=2 * np.pi) -priors["iota"] = bilby.core.prior.Sine(name='iota') +priors["theta_jn"] = bilby.core.prior.Sine(name='theta_jn') priors["psi"] = bilby.core.prior.Uniform(name='psi', minimum=0, maximum=np.pi) priors["phase"] = bilby.core.prior.Uniform( name='phase', minimum=0, maximum=2 * np.pi) diff --git a/examples/injection_examples/fast_tutorial.py b/examples/injection_examples/fast_tutorial.py index c472ba44b62af83b0858ae407bc4653cbb2341f2..6bfd0a0ed8bab100ee78d0fd03476a40b83b04fb 100644 --- a/examples/injection_examples/fast_tutorial.py +++ b/examples/injection_examples/fast_tutorial.py @@ -31,7 +31,7 @@ np.random.seed(88170235) # spins of both black holes (a, tilt, phi), etc. injection_parameters = dict( mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) # Fixed arguments passed into the source model @@ -61,7 +61,7 @@ ifos.inject_signal(waveform_generator=waveform_generator, # prior is a delta function at the true, injected value. In reality, the # sampler implementation is smart enough to not sample any parameter that has # a delta-function prior. -# The above list does *not* include mass_1, mass_2, iota and luminosity +# The above list does *not* include mass_1, mass_2, theta_jn and luminosity # distance, which means those are the parameters that will be included in the # sampler. If we do nothing, then the default priors get used. priors = bilby.gw.prior.BBHPriorDict() diff --git a/examples/injection_examples/how_to_specify_the_prior.py b/examples/injection_examples/how_to_specify_the_prior.py index 885ab328b955bc5794cf63bc194dc428972ac1fd..68081b4d2eddabec080e48005c6fc5536bb546e1 100644 --- a/examples/injection_examples/how_to_specify_the_prior.py +++ b/examples/injection_examples/how_to_specify_the_prior.py @@ -17,7 +17,7 @@ np.random.seed(151012) injection_parameters = dict( mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', @@ -41,7 +41,7 @@ ifos.inject_signal(waveform_generator=waveform_generator, # This loads in a predefined set of priors for BBHs. priors = bilby.gw.prior.BBHPriorDict() # These parameters will not be sampled -for key in ['tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'phase', 'iota', 'ra', +for key in ['tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'phase', 'theta_jn', 'ra', 'dec', 'geocent_time', 'psi']: priors[key] = injection_parameters[key] # We can make uniform distributions. diff --git a/examples/injection_examples/marginalized_likelihood.py b/examples/injection_examples/marginalized_likelihood.py index 06ef88b6731622146e984d5a750861ac4967bd56..6d84b1893c6b1f08419172c5e3ff77a9f5eba915 100644 --- a/examples/injection_examples/marginalized_likelihood.py +++ b/examples/injection_examples/marginalized_likelihood.py @@ -17,7 +17,7 @@ np.random.seed(170608) injection_parameters = dict( mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', @@ -40,7 +40,7 @@ ifos.inject_signal(waveform_generator=waveform_generator, # Set up prior priors = bilby.gw.prior.BBHPriorDict() # These parameters will not be sampled -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'iota', 'ra', +for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'theta_jn', 'ra', 'dec']: priors[key] = injection_parameters[key] diff --git a/examples/injection_examples/plot_skymap.py b/examples/injection_examples/plot_skymap.py index 6453669ba0bc52396e892f1312351d69562e201a..9ebee7725fb0b913a2329c56622367f51033e129 100644 --- a/examples/injection_examples/plot_skymap.py +++ b/examples/injection_examples/plot_skymap.py @@ -12,7 +12,7 @@ outdir = 'outdir' label = 'plot_skymap' injection_parameters = dict( mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-0.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', @@ -33,7 +33,7 @@ ifos.inject_signal(waveform_generator=waveform_generator, priors = bilby.gw.prior.BBHPriorDict() for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', 'mass_1', 'mass_2', 'phase', 'geocent_time', 'luminosity_distance', - 'iota']: + 'theta_jn']: priors[key] = injection_parameters[key] likelihood = bilby.gw.GravitationalWaveTransient( diff --git a/examples/injection_examples/plot_time_domain_data.py b/examples/injection_examples/plot_time_domain_data.py index f3d056b7a9a594a328a200c84ac334ec50775093..eee3c8557bd447714bd0fe9025f838928f9cd542 100644 --- a/examples/injection_examples/plot_time_domain_data.py +++ b/examples/injection_examples/plot_time_domain_data.py @@ -15,7 +15,7 @@ label = 'example' injection_parameters = dict( mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', diff --git a/examples/injection_examples/roq_example.py b/examples/injection_examples/roq_example.py index cd8475b6c81bc84b4623f37db70a6653026246da..2ad8c99d4d020289e1e148f63829c1dbcc0c6560 100644 --- a/examples/injection_examples/roq_example.py +++ b/examples/injection_examples/roq_example.py @@ -33,7 +33,7 @@ sampling_frequency = 2048 injection_parameters = dict( chirp_mass=36., mass_ratio=0.9, a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., iota=0.4, psi=0.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., theta_jn=0.4, psi=0.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', @@ -63,7 +63,7 @@ search_waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) priors = bilby.gw.prior.BBHPriorDict() -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'iota', 'phase', 'psi', 'ra', +for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'theta_jn', 'phase', 'psi', 'ra', 'dec', 'phi_12', 'phi_jl', 'luminosity_distance']: priors[key] = injection_parameters[key] priors.pop('mass_1') diff --git a/examples/injection_examples/standard_15d_cbc_tutorial.py b/examples/injection_examples/standard_15d_cbc_tutorial.py index aa17219acd2da42e20ec878c9a2b13ee03feb831..822c11b1002f1bdb1021e5d0d7daef57dc16a259 100644 --- a/examples/injection_examples/standard_15d_cbc_tutorial.py +++ b/examples/injection_examples/standard_15d_cbc_tutorial.py @@ -27,7 +27,7 @@ np.random.seed(88170235) # spins of both black holes (a, tilt, phi), etc. injection_parameters = dict( mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., iota=0.4, psi=2.659, + phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) # Fixed arguments passed into the source model diff --git a/examples/injection_examples/using_gwin.py b/examples/injection_examples/using_gwin.py index 1539195e60cf0e68f1b3d565f35161e91fbce84b..4d9c583ac6fa35f81b038232c566d2fbada5ad8a 100644 --- a/examples/injection_examples/using_gwin.py +++ b/examples/injection_examples/using_gwin.py @@ -29,7 +29,7 @@ label = 'using_gwin' # Search priors priors = dict() priors['distance'] = bilby.core.prior.Uniform(500, 2000, 'distance') -priors['polarization'] = bilby.core.prior.Uniform(0, np.pi, 'iota') +priors['polarization'] = bilby.core.prior.Uniform(0, np.pi, 'theta_jn') # Data variables seglen = 4 diff --git a/setup.cfg b/setup.cfg index 2c867fe83d66a384df0dea28d12d225f8a60d90a..5a877a55c7907bbe1e011ebe111504508aa90b76 100644 --- a/setup.cfg +++ b/setup.cfg @@ -6,6 +6,8 @@ ignore = E129 W504 W605 [tool:pytest] addopts = --ignore test/other_test.py + --ignore test/gw_example_test.py + --ignore test/example_test.py [metadata] license_file = LICENSE.md diff --git a/test/detector_test.py b/test/detector_test.py index edaa139fc74c12f694254986771decf16512ceee..07d107a074b9f534f1ab4bb45d747585519f4f7d 100644 --- a/test/detector_test.py +++ b/test/detector_test.py @@ -898,6 +898,13 @@ class TestInterferometerList(unittest.TestCase): with self.assertRaises(ValueError): self.ifo_list.inject_signal(injection_polarizations=None, waveform_generator=None) + def test_meta_data(self): + ifos_list = [self.ifo1, self.ifo2] + ifos = bilby.gw.detector.InterferometerList(ifos_list) + self.assertTrue(isinstance(ifos.meta_data, dict)) + meta_data = {ifo.name: ifo.meta_data for ifo in ifos_list} + self.assertEqual(ifos.meta_data, meta_data) + @patch.object(bilby.gw.waveform_generator.WaveformGenerator, 'frequency_domain_strain') def test_inject_signal_pol_none_calls_frequency_domain_strain(self, m): waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( diff --git a/test/gw_likelihood_test.py b/test/gw_likelihood_test.py index b2d9a8128a0c2dcfa0089747dbd2d8a727a9422d..632aadac94536dcd425e7b2914ef1f63bcf17a94 100644 --- a/test/gw_likelihood_test.py +++ b/test/gw_likelihood_test.py @@ -10,7 +10,7 @@ class TestBasicGWTransient(unittest.TestCase): np.random.seed(500) self.parameters = dict( mass_1=31., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) self.interferometers = bilby.gw.detector.InterferometerList(['H1']) @@ -73,7 +73,7 @@ class TestGWTransient(unittest.TestCase): self.sampling_frequency = 2048 self.parameters = dict( mass_1=31., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) self.interferometers = bilby.gw.detector.InterferometerList(['H1']) @@ -143,7 +143,7 @@ class TestTimeMarginalization(unittest.TestCase): self.sampling_frequency = 2048 self.parameters = dict( mass_1=31., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259640, ra=1.375, dec=-1.2108) @@ -242,7 +242,7 @@ class TestMarginalizedLikelihood(unittest.TestCase): self.sampling_frequency = 2048 self.parameters = dict( mass_1=31., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) @@ -306,7 +306,7 @@ class TestPhaseMarginalization(unittest.TestCase): self.sampling_frequency = 2048 self.parameters = dict( mass_1=31., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) @@ -369,7 +369,7 @@ class TestTimePhaseMarginalization(unittest.TestCase): self.sampling_frequency = 2048 self.parameters = dict( mass_1=31., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) @@ -472,9 +472,9 @@ class TestROQLikelihood(unittest.TestCase): fnodes_quadratic = np.load(fnodes_quadratic_file).T self.test_parameters = dict( - mass_1=36.0, mass_2=36.0, a_1=0.0, a_2=0.0, tilt_1=0.0, - tilt_2=0.0, phi_12=1.7, phi_jl=0.3, luminosity_distance=5000., - iota=0.4, psi=0.659, phase=1.3, geocent_time=1.2, ra=1.3, dec=-1.2) + mass_1=36.0, mass_2=36.0, a_1=0.0, a_2=0.0, tilt_1=0.0, tilt_2=0.0, + phi_12=1.7, phi_jl=0.3, luminosity_distance=5000., theta_jn=0.4, + psi=0.659, phase=1.3, geocent_time=1.2, ra=1.3, dec=-1.2) ifos = bilby.gw.detector.InterferometerList(['H1']) ifos.set_strain_data_from_power_spectral_densities( @@ -509,7 +509,12 @@ class TestROQLikelihood(unittest.TestCase): interferometers=ifos, waveform_generator=roq_wfg, linear_matrix=linear_matrix_file, quadratic_matrix=quadratic_matrix_file, priors=self.priors) - pass + + self.roq_phase_like = bilby.gw.likelihood.ROQGravitationalWaveTransient( + interferometers=ifos, waveform_generator=roq_wfg, + linear_matrix=linear_matrix_file, + quadratic_matrix=quadratic_matrix_file, + phase_marginalization=True, priors=self.priors.copy()) def tearDown(self): pass @@ -527,6 +532,20 @@ class TestROQLikelihood(unittest.TestCase): self.assertEqual( self.roq_likelihood.log_likelihood_ratio(), np.nan_to_num(-np.inf)) + def test_phase_marginalisation_roq(self): + """Test phase marginalised likelihood matches brute force version""" + like = [] + self.roq_likelihood.parameters.update(self.test_parameters) + phases = np.linspace(0, 2 * np.pi, 1000) + for phase in phases: + self.roq_likelihood.parameters['phase'] = phase + like.append(np.exp(self.roq_likelihood.log_likelihood_ratio())) + + marg_like = np.log(np.trapz(like, phases) / (2 * np.pi)) + self.roq_phase_like.parameters = self.test_parameters.copy() + self.assertAlmostEqual( + marg_like, self.roq_phase_like.log_likelihood_ratio(), delta=0.5) + class TestBBHLikelihoodSetUp(unittest.TestCase): diff --git a/test/gw_prior_test.py b/test/gw_prior_test.py index f7c7454e9472f496b048045e1719b23f08321cfa..1eac2e76ca9311323edc6033668611cee5780a31 100644 --- a/test/gw_prior_test.py +++ b/test/gw_prior_test.py @@ -16,42 +16,174 @@ class TestBBHPriorDict(unittest.TestCase): self.base_directory =\ '/'.join(os.path.dirname( os.path.abspath(sys.argv[0])).split('/')[:-1]) - self.filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'prior_files/binary_black_holes.prior') - self.default_prior = bilby.gw.prior.BBHPriorDict( - filename=self.filename) + self.filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), + 'prior_files/binary_black_holes.prior') + self.bbh_prior_dict = bilby.gw.prior.BBHPriorDict(filename=self.filename) + for key, value in self.bbh_prior_dict.items(): + self.prior_dict[key] = value def tearDown(self): del self.prior_dict del self.filename + del self.bbh_prior_dict + del self.base_directory def test_create_default_prior(self): default = bilby.gw.prior.BBHPriorDict() - minima = all([self.default_prior[key].minimum == default[key].minimum + minima = all([self.bbh_prior_dict[key].minimum == default[key].minimum for key in default.keys()]) - maxima = all([self.default_prior[key].maximum == default[key].maximum + maxima = all([self.bbh_prior_dict[key].maximum == default[key].maximum for key in default.keys()]) - names = all([self.default_prior[key].name == default[key].name + names = all([self.bbh_prior_dict[key].name == default[key].name for key in default.keys()]) self.assertTrue(all([minima, maxima, names])) def test_create_from_dict(self): - bilby.gw.prior.BBHPriorDict(dictionary=self.prior_dict) + new_dict = bilby.gw.prior.BBHPriorDict(dictionary=self.prior_dict) + for key in self.bbh_prior_dict: + self.assertEqual(self.bbh_prior_dict[key], new_dict[key]) + + def test_redundant_priors_not_in_dict_before(self): + for prior in ['chirp_mass', 'total_mass', 'mass_ratio', 'symmetric_mass_ratio', + 'cos_tilt_1', 'cos_tilt_2', 'phi_1', 'phi_2', 'cos_theta_jn', + 'comoving_distance', 'redshift']: + self.assertTrue(self.bbh_prior_dict.test_redundancy(prior)) + + def test_redundant_priors_already_in_dict(self): + for prior in ['mass_1', 'mass_2', 'tilt_1', 'tilt_2', + 'phi_1', 'phi_2', 'theta_jn', 'luminosity_distance']: + self.assertTrue(self.bbh_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_masses(self): + del self.bbh_prior_dict['mass_2'] + for prior in ['mass_2', 'chirp_mass', 'total_mass', 'mass_ratio', 'symmetric_mass_ratio']: + self.assertFalse(self.bbh_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_spin_magnitudes(self): + del self.bbh_prior_dict['a_2'] + self.assertFalse(self.bbh_prior_dict.test_redundancy('a_2')) + + def test_correct_not_redundant_priors_spin_tilt_1(self): + del self.bbh_prior_dict['tilt_1'] + for prior in ['tilt_1', 'cos_tilt_1']: + self.assertFalse(self.bbh_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_spin_tilt_2(self): + del self.bbh_prior_dict['tilt_2'] + for prior in ['tilt_2', 'cos_tilt_2']: + self.assertFalse(self.bbh_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_spin_azimuth(self): + del self.bbh_prior_dict['phi_12'] + for prior in ['phi_1', 'phi_2', 'phi_12']: + self.assertFalse(self.bbh_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_inclination(self): + del self.bbh_prior_dict['theta_jn'] + for prior in ['theta_jn', 'cos_theta_jn']: + self.assertFalse(self.bbh_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_distance(self): + del self.bbh_prior_dict['luminosity_distance'] + for prior in ['luminosity_distance', 'comoving_distance', + 'redshift']: + self.assertFalse(self.bbh_prior_dict.test_redundancy(prior)) + + def test_add_unrelated_prior(self): + self.assertFalse(self.bbh_prior_dict.test_redundancy('abc')) + + def test_test_has_redundant_priors(self): + self.assertFalse(self.bbh_prior_dict.test_has_redundant_keys()) + for prior in ['chirp_mass', 'total_mass', 'mass_ratio', 'symmetric_mass_ratio', + 'cos_tilt_1', 'cos_tilt_2', 'phi_1', 'phi_2', 'cos_theta_jn', + 'comoving_distance', 'redshift']: + self.bbh_prior_dict[prior] = 0 + self.assertTrue(self.bbh_prior_dict.test_has_redundant_keys()) + del self.bbh_prior_dict[prior] + + +class TestBNSPriorDict(unittest.TestCase): - def test_create_from_filename(self): - bilby.gw.prior.BBHPriorDict(filename=self.filename) + def setUp(self): + self.prior_dict = dict() + self.base_directory =\ + '/'.join(os.path.dirname( + os.path.abspath(sys.argv[0])).split('/')[:-1]) + self.filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), + 'prior_files/binary_neutron_stars.prior') + self.bns_prior_dict = bilby.gw.prior.BNSPriorDict(filename=self.filename) + for key, value in self.bns_prior_dict.items(): + self.prior_dict[key] = value - def test_key_in_prior_not_redundant(self): - test = self.default_prior.test_redundancy('mass_1') - self.assertFalse(test) + def tearDown(self): + del self.prior_dict + del self.filename + del self.bns_prior_dict + del self.base_directory - def test_chirp_mass_redundant(self): - test = self.default_prior.test_redundancy('chirp_mass') - self.assertTrue(test) + def test_create_default_prior(self): + default = bilby.gw.prior.BNSPriorDict() + minima = all([self.bns_prior_dict[key].minimum == default[key].minimum + for key in default.keys()]) + maxima = all([self.bns_prior_dict[key].maximum == default[key].maximum + for key in default.keys()]) + names = all([self.bns_prior_dict[key].name == default[key].name + for key in default.keys()]) - def test_comoving_distance_redundant(self): - test = self.default_prior.test_redundancy('comoving_distance') - self.assertTrue(test) + self.assertTrue(all([minima, maxima, names])) + + def test_create_from_dict(self): + new_dict = bilby.gw.prior.BNSPriorDict(dictionary=self.prior_dict) + self.assertDictEqual(self.bns_prior_dict, new_dict) + + def test_redundant_priors_not_in_dict_before(self): + for prior in ['chirp_mass', 'total_mass', 'mass_ratio', + 'symmetric_mass_ratio', 'cos_theta_jn', 'comoving_distance', + 'redshift', 'lambda_tilde', 'delta_lambda']: + self.assertTrue(self.bns_prior_dict.test_redundancy(prior)) + + def test_redundant_priors_already_in_dict(self): + for prior in ['mass_1', 'mass_2', 'chi_1', 'chi_2', + 'theta_jn', 'luminosity_distance', + 'lambda_1', 'lambda_2']: + self.assertTrue(self.bns_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_masses(self): + del self.bns_prior_dict['mass_2'] + for prior in ['mass_2', 'chirp_mass', 'total_mass', 'mass_ratio', 'symmetric_mass_ratio']: + self.assertFalse(self.bns_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_spin_magnitudes(self): + del self.bns_prior_dict['chi_2'] + self.assertFalse(self.bns_prior_dict.test_redundancy('chi_2')) + + def test_correct_not_redundant_priors_inclination(self): + del self.bns_prior_dict['theta_jn'] + for prior in ['theta_jn', 'cos_theta_jn']: + self.assertFalse(self.bns_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_distance(self): + del self.bns_prior_dict['luminosity_distance'] + for prior in ['luminosity_distance', 'comoving_distance', + 'redshift']: + self.assertFalse(self.bns_prior_dict.test_redundancy(prior)) + + def test_correct_not_redundant_priors_tidal(self): + del self.bns_prior_dict['lambda_1'] + for prior in['lambda_1', 'lambda_tilde', 'delta_lambda']: + self.assertFalse(self.bns_prior_dict.test_redundancy(prior)) + + def test_add_unrelated_prior(self): + self.assertFalse(self.bns_prior_dict.test_redundancy('abc')) + + def test_test_has_redundant_priors(self): + self.assertFalse(self.bns_prior_dict.test_has_redundant_keys()) + for prior in ['chirp_mass', 'total_mass', 'mass_ratio', 'symmetric_mass_ratio', + 'cos_theta_jn', 'comoving_distance', 'redshift']: + self.bns_prior_dict[prior] = 0 + self.assertTrue(self.bns_prior_dict.test_has_redundant_keys()) + del self.bns_prior_dict[prior] class TestCalibrationPrior(unittest.TestCase): diff --git a/test/gw_utils_test.py b/test/gw_utils_test.py new file mode 100644 index 0000000000000000000000000000000000000000..bce6f97de0978fff982b1ee65d59e0559a8cfeab --- /dev/null +++ b/test/gw_utils_test.py @@ -0,0 +1,188 @@ +from __future__ import absolute_import, division + +import unittest +import os +from shutil import rmtree + +import numpy as np +import gwpy +import lal +import lalsimulation as lalsim + +import bilby +from bilby.gw import utils as gwutils + + +class TestGWUtils(unittest.TestCase): + + def setUp(self): + self.outdir = 'outdir' + bilby.core.utils.check_directory_exists_and_if_not_mkdir(self.outdir) + + def tearDown(self): + try: + rmtree(self.outdir) + except FileNotFoundError: + pass + + def test_asd_from_freq_series(self): + freq_data = np.array([1, 2, 3]) + df = 0.1 + asd = gwutils.asd_from_freq_series(freq_data, df) + self.assertTrue(np.all(asd == freq_data * 2 * df ** 0.5)) + + def test_psd_from_freq_series(self): + freq_data = np.array([1, 2, 3]) + df = 0.1 + psd = gwutils.psd_from_freq_series(freq_data, df) + self.assertTrue(np.all(psd == (freq_data * 2 * df ** 0.5)**2)) + + def test_time_delay_from_geocenter(self): + det1 = np.array([0.1, 0.2, 0.3]) + det2 = np.array([0.1, 0.2, 0.5]) + ra = 0.5 + dec = 0.2 + time = 10 + self.assertEqual( + gwutils.time_delay_geocentric(det1, det1, ra, dec, time), 0) + self.assertEqual( + gwutils.time_delay_geocentric(det1, det2, ra, dec, time), + 1.3253791114055397e-10) + + def test_get_polarization_tensor(self): + ra = 1 + dec = 2.0 + time = 10 + psi = 0.1 + for mode in ['plus', 'cross', 'breathing', 'longitudinal', 'x', 'y']: + p = gwutils.get_polarization_tensor(ra, dec, time, psi, mode) + self.assertEqual(p.shape, (3, 3)) + with self.assertRaises(ValueError): + gwutils.get_polarization_tensor(ra, dec, time, psi, 'not-a-mode') + + def test_inner_product(self): + aa = np.array([1, 2, 3]) + bb = np.array([5, 6, 7]) + frequency = np.array([0.2, 0.4, 0.6]) + PSD = bilby.gw.detector.PowerSpectralDensity.from_aligo() + ip = gwutils.inner_product(aa, bb, frequency, PSD) + self.assertEqual(ip, 0) + + def test_noise_weighted_inner_product(self): + aa = np.array([1e-23, 2e-23, 3e-23]) + bb = np.array([5e-23, 6e-23, 7e-23]) + frequency = np.array([100, 101, 102]) + PSD = bilby.gw.detector.PowerSpectralDensity.from_aligo() + psd = PSD.power_spectral_density_interpolated(frequency) + duration = 4 + nwip = gwutils.noise_weighted_inner_product(aa, bb, psd, duration) + self.assertEqual(nwip, 239.87768033598326) + + self.assertEqual( + gwutils.optimal_snr_squared(aa, psd, duration), + gwutils.noise_weighted_inner_product(aa, aa, psd, duration)) + + def test_matched_filter_snr(self): + signal = np.array([1e-23, 2e-23, 3e-23]) + frequency_domain_strain = np.array([5e-23, 6e-23, 7e-23]) + frequency = np.array([100, 101, 102]) + PSD = bilby.gw.detector.PowerSpectralDensity.from_aligo() + psd = PSD.power_spectral_density_interpolated(frequency) + duration = 4 + + mfsnr = gwutils.matched_filter_snr( + signal, frequency_domain_strain, psd, duration) + self.assertEqual(mfsnr, 25.510869054168282) + + def test_get_event_time(self): + events = ['GW150914', 'GW151012', 'GW151226', 'GW170104', 'GW170608', + 'GW170729', 'GW170809', 'GW170814', 'GW170817', 'GW170818', + 'GW170823'] + for event in events: + self.assertTrue(isinstance(gwutils.get_event_time(event), float)) + + self.assertTrue(gwutils.get_event_time('GW010290') is None) + + def test_read_frame_file(self): + start_time = 0 + end_time = 10 + channel = 'H1:GDS-CALIB_STRAIN' + N = 100 + times = np.linspace(start_time, end_time, N) + data = np.random.normal(0, 1, N) + ts = gwpy.timeseries.TimeSeries(data=data, times=times, t0=0) + ts.channel = gwpy.detector.Channel(channel) + ts.name = channel + filename = os.path.join(self.outdir, 'test.gwf') + ts.write(filename, format='gwf') + + # Check reading without time limits + strain = gwutils.read_frame_file( + filename, start_time=None, end_time=None, channel=channel) + self.assertEqual(strain.channel.name, channel) + self.assertTrue(np.all(strain.value==data)) + + # Check reading with time limits + start_cut = 2 + end_cut = 8 + strain = gwutils.read_frame_file( + filename, start_time=start_cut, end_time=end_cut, channel=channel) + idxs = (times > start_cut) & (times < end_cut) + # Dropping the last element - for some reason gwpy drops the last element when reading in data + self.assertTrue(np.all(strain.value==data[idxs][:-1])) + + # Check reading with unknown channels + strain = gwutils.read_frame_file( + filename, start_time=None, end_time=None) + self.assertTrue(np.all(strain.value==data)) + + # Check reading with incorrect channel + strain = gwutils.read_frame_file( + filename, start_time=None, end_time=None, channel='WRONG') + self.assertTrue(np.all(strain.value==data)) + + ts = gwpy.timeseries.TimeSeries(data=data, times=times, t0=0) + ts.name = 'NOT-A-KNOWN-CHANNEL' + ts.write(filename, format='gwf') + strain = gwutils.read_frame_file( + filename, start_time=None, end_time=None) + self.assertEqual(strain, None) + + def test_convert_args_list_to_float(self): + self.assertEqual( + gwutils.convert_args_list_to_float(1, '2', 3.0), [1.0, 2.0, 3.0]) + with self.assertRaises(ValueError): + gwutils.convert_args_list_to_float(1, '2', 'ten') + + def test_lalsim_SimInspiralTransformPrecessingNewInitialConditions(self): + a = gwutils.lalsim_SimInspiralTransformPrecessingNewInitialConditions( + 0.1, 0, 0.6, 0.5, 0.6, 0.1, 0.8, 30.6, 23.2, 50, 0) + self.assertTrue(len(a) == 7) + + def test_get_approximant(self): + with self.assertRaises(ValueError): + gwutils.lalsim_GetApproximantFromString(10) + self.assertEqual(gwutils.lalsim_GetApproximantFromString("IMRPhenomPV2"), 69) + + def test_lalsim_SimInspiralChooseFDWaveform(self): + a = gwutils.lalsim_SimInspiralChooseFDWaveform( + 35.2, 20.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 1000, 2, 2.3, + 45., 0.1, 10, 0.01, 10, 1000, 20, None, 69) + self.assertEqual(len(a), 2) + self.assertEqual(type(a[0]), lal.COMPLEX16FrequencySeries) + self.assertEqual(type(a[1]), lal.COMPLEX16FrequencySeries) + + with self.assertRaises(ValueError): + a = gwutils.lalsim_SimInspiralChooseFDWaveform( + 35.2, 20.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 1000, 2, 2.3, + 45., 0.1, 10, 0.01, 10, 1000, 20, None, 'IMRPhenomPV2') + + def test_lalsim_SimIMRPhenomPCalculateModelParametersFromSourceFrame(self): + version = lalsim.IMRPhenomPv2_V + a = gwutils.lalsim_SimIMRPhenomPCalculateModelParametersFromSourceFrame( + 25.6, 12.2, 50, 0.2, 0, 0, 0, 0, 0, 0, 0, version) + self.assertEqual(len(a), 7) + + +if __name__ == '__main__': + unittest.main() diff --git a/test/make_standard_data.py b/test/make_standard_data.py index fcab591cd11b14313fa87aa7d74483f58ac9823f..458ce69b4652ba7cd90fd90a3c746d055cc0b60f 100644 --- a/test/make_standard_data.py +++ b/test/make_standard_data.py @@ -22,7 +22,7 @@ simulation_parameters = dict( phi_12=0., phi_jl=0., luminosity_distance=100., - iota=0.4, + theta_jn=0.4, phase=1.3, waveform_approximant='IMRPhenomPv2', reference_frequency=50., diff --git a/test/prior_files/binary_black_holes.prior b/test/prior_files/binary_black_holes.prior index 5314635bd779f09098e3c8c2002f3367f046547d..e41cc73e2f765fbddd821693604ac15e302586f2 100644 --- a/test/prior_files/binary_black_holes.prior +++ b/test/prior_files/binary_black_holes.prior @@ -19,7 +19,7 @@ phi_jl = Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi) luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc') dec = Cosine(name='dec') ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi) -iota = Sine(name='iota') -# cos_iota = Uniform(name='cos_iota', minimum=-1, maximum=1) +theta_jn = Sine(name='theta_jn') +# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1) psi = Uniform(name='psi', minimum=0, maximum=np.pi) phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi) diff --git a/test/prior_files/binary_neutron_stars.prior b/test/prior_files/binary_neutron_stars.prior new file mode 100644 index 0000000000000000000000000000000000000000..08ec88f2ffb8bd6536563cb20723aabb589c7c13 --- /dev/null +++ b/test/prior_files/binary_neutron_stars.prior @@ -0,0 +1,23 @@ +# These are the default priors we use for BNS systems. +# Note that you may wish to use more specific mass and distance parameters. +# These commands are all known to bilby.gw.prior. +# Lines beginning "#" are ignored. +mass_1 = Uniform(name='mass_1', minimum=1, maximum=2, unit='$M_{\\odot}$') +mass_2 = Uniform(name='mass_2', minimum=1, maximum=2, unit='$M_{\\odot}$') +# chirp_mass = Uniform(name='chirp_mass', minimum=0.87, maximum=1.74, unit='$M_{\\odot}$') +# total_mass = Uniform(name='total_mass', minimum=2, maximum=4, unit='$M_{\\odot}$') +# mass_ratio = Uniform(name='mass_ratio', minimum=0.5, maximum=1) +# symmetric_mass_ratio = Uniform(name='symmetric_mass_ratio', minimum=0.22, maximum=0.25) +chi_1 = bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_1', latex_label='$\\chi_1$') +chi_2 = bilby.gw.prior.AlignedSpin(a_prior=Uniform(0, 0.05), z_prior=Uniform(-1, 1), name='chi_2', latex_label='$\\chi_2$') +luminosity_distance = bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=10, maximum=500, unit='Mpc') +dec = Cosine(name='dec') +ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi) +theta_jn = Sine(name='theta_jn') +# cos_theta_jn = Uniform(name='cos_theta_jn', minimum=-1, maximum=1) +psi = Uniform(name='psi', minimum=0, maximum=np.pi) +phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi) +lambda_1 = Uniform(name='lambda_1', minimum=0, maximum=3000 ) +lambda_2 = Uniform(name='lambda_2', minimum=0, maximum=3000 ) +# lambda_tilde = Uniform(name='lambda_tilde', minimum=0, maximum=5000) +# delta_lambda = Uniform(name='delta_lambda', minimum=-5000, maximum=5000) diff --git a/test/prior_test.py b/test/prior_test.py index 4b85a66c625b43f1194fa79213278e807b65f399..d73d8d5b9001debc72c7cc7379c864a4619f90d1 100644 --- a/test/prior_test.py +++ b/test/prior_test.py @@ -380,7 +380,7 @@ class TestPriorDict(unittest.TestCase): dec=bilby.core.prior.Cosine(name='dec'), ra=bilby.core.prior.Uniform( name='ra', minimum=0, maximum=2 * np.pi), - iota=bilby.core.prior.Sine(name='iota'), + theta_jn=bilby.core.prior.Sine(name='theta_jn'), psi=bilby.core.prior.Uniform(name='psi', minimum=0, maximum=np.pi), phase=bilby.core.prior.Uniform( name='phase', minimum=0, maximum=2 * np.pi) @@ -436,7 +436,7 @@ class TestPriorDict(unittest.TestCase): dec=bilby.core.prior.Cosine(name='dec'), ra=bilby.core.prior.Uniform( name='ra', minimum=0, maximum=2 * np.pi), - iota=bilby.core.prior.Sine(name='iota'), + theta_jn=bilby.core.prior.Sine(name='theta_jn'), psi=bilby.core.prior.Uniform(name='psi', minimum=0, maximum=np.pi), phase=bilby.core.prior.Uniform( name='phase', minimum=0, maximum=2 * np.pi) diff --git a/test/result_test.py b/test/result_test.py index 6dbc5a2342391a57a9286b9d304894ec32b8746d..2aea035714b75ef31fa73ed65ce583365cdff2e5 100644 --- a/test/result_test.py +++ b/test/result_test.py @@ -45,10 +45,16 @@ class TestResult(unittest.TestCase): del self.result pass - def test_result_file_name(self): + def test_result_file_name_default(self): outdir = 'outdir' label = 'label' self.assertEqual(bilby.core.result.result_file_name(outdir, label), + '{}/{}_result.json'.format(outdir, label)) + + def test_result_file_name_hdf5(self): + outdir = 'outdir' + label = 'label' + self.assertEqual(bilby.core.result.result_file_name(outdir, label, extension='hdf5'), '{}/{}_result.h5'.format(outdir, label)) def test_fail_save_and_load(self): @@ -104,8 +110,8 @@ class TestResult(unittest.TestCase): with self.assertRaises(ValueError): _ = self.result.posterior - def test_save_and_load(self): - self.result.save_to_file() + def test_save_and_load_hdf5(self): + self.result.save_to_file(extension='hdf5') loaded_result = bilby.core.result.read_in_result( outdir=self.result.outdir, label=self.result.label) self.assertTrue(pd.DataFrame.equals @@ -123,23 +129,61 @@ class TestResult(unittest.TestCase): self.assertEqual(self.result.priors['c'], loaded_result.priors['c']) self.assertEqual(self.result.priors['d'], loaded_result.priors['d']) - def test_save_and_dont_overwrite(self): + def test_save_and_load_default(self): + self.result.save_to_file() + loaded_result = bilby.core.result.read_in_result( + outdir=self.result.outdir, label=self.result.label) + self.assertTrue(np.array_equal + (self.result.posterior.sort_values(by=['x']), + loaded_result.posterior.sort_values(by=['x']))) + self.assertTrue(self.result.fixed_parameter_keys == loaded_result.fixed_parameter_keys) + self.assertTrue(self.result.search_parameter_keys == loaded_result.search_parameter_keys) + self.assertEqual(self.result.meta_data, loaded_result.meta_data) + self.assertEqual(self.result.injection_parameters, loaded_result.injection_parameters) + self.assertEqual(self.result.log_evidence, loaded_result.log_evidence) + self.assertEqual(self.result.log_noise_evidence, loaded_result.log_noise_evidence) + self.assertEqual(self.result.log_evidence_err, loaded_result.log_evidence_err) + self.assertEqual(self.result.log_bayes_factor, loaded_result.log_bayes_factor) + self.assertEqual(self.result.priors['x'], loaded_result.priors['x']) + self.assertEqual(self.result.priors['y'], loaded_result.priors['y']) + self.assertEqual(self.result.priors['c'], loaded_result.priors['c']) + self.assertEqual(self.result.priors['d'], loaded_result.priors['d']) + + def test_save_and_dont_overwrite_default(self): shutil.rmtree( - '{}/{}_result.h5.old'.format(self.result.outdir, self.result.label), + '{}/{}_result.json.old'.format(self.result.outdir, self.result.label), ignore_errors=True) self.result.save_to_file(overwrite=False) self.result.save_to_file(overwrite=False) + self.assertTrue(os.path.isfile( + '{}/{}_result.json.old'.format(self.result.outdir, self.result.label))) + + def test_save_and_dont_overwrite_hdf5(self): + shutil.rmtree( + '{}/{}_result.h5.old'.format(self.result.outdir, self.result.label), + ignore_errors=True) + self.result.save_to_file(overwrite=False, extension='hdf5') + self.result.save_to_file(overwrite=False, extension='hdf5') self.assertTrue(os.path.isfile( '{}/{}_result.h5.old'.format(self.result.outdir, self.result.label))) - def test_save_and_overwrite(self): + def test_save_and_overwrite_hdf5(self): shutil.rmtree( '{}/{}_result.h5.old'.format(self.result.outdir, self.result.label), ignore_errors=True) + self.result.save_to_file(overwrite=True, extension='hdf5') + self.result.save_to_file(overwrite=True, extension='hdf5') + self.assertFalse(os.path.isfile( + '{}/{}_result.h5.old'.format(self.result.outdir, self.result.label))) + + def test_save_and_overwrite_default(self): + shutil.rmtree( + '{}/{}_result.json.old'.format(self.result.outdir, self.result.label), + ignore_errors=True) self.result.save_to_file(overwrite=True) self.result.save_to_file(overwrite=True) self.assertFalse(os.path.isfile( - '{}/{}_result.h5.old'.format(self.result.outdir, self.result.label))) + '{}/{}_result.json.old'.format(self.result.outdir, self.result.label))) def test_save_samples(self): self.result.save_posterior_samples()