diff --git a/tupak/core/likelihood.py b/tupak/core/likelihood.py index a402ad36bfea9870e29876cbf363fef8e2d42c96..3470c635b26a8cfdecee1bdf46a327901f6899c7 100644 --- a/tupak/core/likelihood.py +++ b/tupak/core/likelihood.py @@ -126,7 +126,7 @@ class Analytical1DLikelihood(Likelihood): class GaussianLikelihood(Analytical1DLikelihood): - def __init__(self, x, y, function, sigma=None): + def __init__(self, x, y, func, sigma=None): """ A general Gaussian likelihood for known or unknown noise - the model parameters are inferred from the arguments of function @@ -135,7 +135,7 @@ class GaussianLikelihood(Analytical1DLikelihood): ---------- x, y: array_like The data to analyse - function: + func: The python function to fit to the data. Note, this must take the dependent variable as its first argument. The other arguments will require a prior and will be sampled over (unless a fixed @@ -148,7 +148,7 @@ class GaussianLikelihood(Analytical1DLikelihood): to that for `x` and `y`. """ - Analytical1DLikelihood.__init__(self, x=x, y=y, func=function) + Analytical1DLikelihood.__init__(self, x=x, y=y, func=func) self.sigma = sigma # Check if sigma was provided, if not it is a parameter