From fe1b075d50e29bf61e5e60524d68eb531e468dc2 Mon Sep 17 00:00:00 2001 From: John Veitch <john.veitch@ligo.org> Date: Thu, 16 Mar 2023 12:05:02 +0000 Subject: [PATCH] flake changes --- bilby/core/result.py | 23 +++++++++++++---------- 1 file changed, 13 insertions(+), 10 deletions(-) diff --git a/bilby/core/result.py b/bilby/core/result.py index bb895090a..7d22109e2 100644 --- a/bilby/core/result.py +++ b/bilby/core/result.py @@ -30,10 +30,12 @@ from .prior import Prior, PriorDict, DeltaFunction, ConditionalDeltaFunction EXTENSIONS = ["json", "hdf5", "h5", "pickle", "pkl"] + def __eval_l(likelihood, params): likelihood.parameters.update(params) return likelihood.log_likelihood() + def result_file_name(outdir, label, extension='json', gzip=False): """ Returns the standard filename used for a result file @@ -149,19 +151,20 @@ def get_weights_for_reweighting( starting_index = 0 - dict_samples = [{key: sample[key] for key in result.posterior} for i,sample in result.posterior.iterrows()] + dict_samples = [{key: sample[key] for key in result.posterior} + for _, sample in result.posterior.iterrows()] n = len(dict_samples) - starting_index # Helper function to compute likelihoods in parallel def eval_pool(this_logl): with multiprocessing.Pool(processes=npool) as pool: - chunksize = max(100,n//(2*npool)) + chunksize = max(100, n // (2 * npool)) return list(tqdm( - pool.imap(partial(__eval_l,this_logl), - dict_samples[starting_index:], chunksize=chunksize), - desc = 'Computing likelihoods', - total = n - )) + pool.imap(partial(__eval_l, this_logl), + dict_samples[starting_index:], chunksize=chunksize), + desc='Computing likelihoods', + total=n) + ) if old_likelihood is None: old_log_likelihood_array[starting_index:] = \ @@ -177,9 +180,9 @@ def get_weights_for_reweighting( # Compute priors for ii, sample in enumerate(tqdm(dict_samples[starting_index:], - desc = 'Computing priors', - total = n), - start = starting_index): + desc='Computing priors', + total=n), + start=starting_index): if old_prior is not None: old_log_prior_array[ii] = old_prior.ln_prob(dict_samples[ii]) else: -- GitLab