Skip to content
Snippets Groups Projects

Resolve #430 (Add normalisation flag to constrained prior)

Merged Resolve #430 (Add normalisation flag to constrained prior)
All threads resolved!
Merged Bruce Edelman requested to merge bruce.edelman/bilby:constraint into master
All threads resolved!
Compare and Show latest version
1 file
+ 23
28
Compare changes
  • Side-by-side
  • Inline
+ 23
28
@@ -3,7 +3,6 @@ from io import open as ioopen
import json
import numpy as np
import os
from functools import lru_cache
from future.utils import iteritems
from matplotlib.cbook import flatten
@@ -42,6 +41,7 @@ class PriorDict(dict):
self.from_file(filename)
elif dictionary is not None:
raise ValueError("PriorDict input dictionary not understood")
self._cached_normalizations= {}
self.convert_floats_to_delta_functions()
@@ -379,18 +379,27 @@ class PriorDict(dict):
if not isinstance(self[key], Constraint)}
return all_samples
@lru_cache()
def normalize_constraint_factor(self, keys):
min_accept = 50
sampling_chunk = 250
samples = self.sample_subset(keys=keys, size=sampling_chunk)
keep = np.array(self.evaluate_constraints(samples))
while np.count_nonzero(keep) < min_accept:
new_samples = self.sample_subset(keys=keys, size=sampling_chunk)
for key in samples:
samples[key] = np.concatenate(samples[key], new_samples[key])
keep = np.array(self.evaluate_constraints(samples))
return len(keep) / np.count_nonzero(keep)
if tuple(keys) in self._cached_normalizations.keys():
return self._cached_normalizations[tuple(keys)]
else:
min_accept = 1000
sampling_chunk = 5000
samples = self.sample_subset(keys=keys, size=sampling_chunk)
keep = np.atleast_1d(self.evaluate_constraints(samples))
if len(keep) == 1:
return 1
all_samples = {key: np.array([]) for key in keys}
_first_key = list(all_samples.keys())[0]
while np.count_nonzero(keep) < min_accept:
samples = self.sample_subset(keys=keys, size=sampling_chunk)
for key in samples:
all_samples[key] = np.hstack(
[all_samples[key], samples[key].flatten()])
keep = np.array(self.evaluate_constraints(all_samples), dtype=bool)
factor = len(keep) / np.count_nonzero(keep)
self._cached_normalizations[tuple(keys)] = factor
return factor
def prob(self, sample, **kwargs):
"""
@@ -410,14 +419,7 @@ class PriorDict(dict):
prob = np.product([self[key].prob(sample[key])
for key in sample], **kwargs)
ratio = 1
outsample = self.conversion_function(sample)
# Check if there is a constraint in sample/outsample
if (np.any(isinstance([self[key] for key in sample.keys()], Constraint)) or
np.any(isinstance([self[key] for key in outsample.keys()], Constraint))):
# If constraint exists in keys, caclulate the cached normalization constant
ratio = self.normalize_constraint_factor(sample.keys())
ratio = self.normalize_constraint_factor(tuple(sample.keys()))
if np.all(prob == 0.):
return prob
else:
@@ -451,14 +453,7 @@ class PriorDict(dict):
ln_prob = np.sum([self[key].ln_prob(sample[key])
for key in sample], axis=axis)
ratio = 1
outsample = self.conversion_function(sample)
# Check if there is a constraint in sample/outsample
if (np.any(isinstance([self[key] for key in sample.keys()], Constraint)) or
np.any(isinstance([self[key] for key in outsample.keys()], Constraint))):
# If constraint exists in keys, caclulate the cached normalization constant
ratio = self.normalize_constraint_factor(sample.keys())
ratio = self.normalize_constraint_factor(tuple(sample.keys()))
if np.all(np.isinf(ln_prob)):
return ln_prob
else:
Loading