#!/bin/python """ Tutorial to demonstrate how to improve the speed and efficiency of parameter estimation on an injected signal using phase and distance marginalisation. """ from __future__ import division, print_function import tupak import numpy as np duration = 4. sampling_frequency = 2048. outdir = 'outdir' np.random.seed(170608) injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', reference_frequency=50.) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = tupak.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=tupak.gw.source.lal_binary_black_hole, parameters=injection_parameters, waveform_arguments=waveform_arguments) hf_signal = waveform_generator.frequency_domain_strain() # Set up interferometers. IFOs = [tupak.gw.detector.get_interferometer_with_fake_noise_and_injection( name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, duration=duration, sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1', 'V1']] # Set up prior priors = tupak.gw.prior.BBHPriorSet() # These parameters will not be sampled for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'iota', 'ra', 'dec', 'geocent_time']: priors[key] = injection_parameters[key] # Initialise GravitationalWaveTransient # Note that we now need to pass the: priors and flags for each thing that's being marginalised. # This is still under development so care should be taken with the marginalised likelihood. likelihood = tupak.gw.GravitationalWaveTransient( interferometers=IFOs, waveform_generator=waveform_generator, prior=priors, distance_marginalization=False, phase_marginalization=True, time_marginalization=False) # Run sampler result = tupak.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', injection_parameters=injection_parameters, outdir=outdir, label='MarginalisedLikelihood') result.plot_corner()