#!/bin/python """ Tutorial to demonstrate running parameter estimation on a reduced parameter space for an injected signal. This example estimates the masses using a uniform prior in both component masses and distance using a uniform in comoving volume prior on luminosity distance between luminosity distances of 100Mpc and 5Gpc, the cosmology is WMAP7. """ from __future__ import division, print_function import numpy as np import tupak # Set the duration and sampling frequency of the data segment that we're going to inject the signal into time_duration = 4. sampling_frequency = 2048. # Specify the output directory and the name of the simulation. outdir = 'outdir' label = 'basic_tutorial' tupak.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! np.random.seed(88170235) # We are going to inject a binary black hole waveform. We first establish a dictionary of parameters that # includes all of the different waveform parameters, including masses of the two black holes (mass_1, mass_2), # spins of both black holes (a, tilt, phi), etc. injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) # Fixed arguments passed into the source model waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', reference_frequency=50.) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = tupak.WaveformGenerator(time_duration=time_duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=tupak.gw.source.lal_binary_black_hole, parameters=injection_parameters, waveform_arguments=waveform_arguments) hf_signal = waveform_generator.frequency_domain_strain() # Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1), # and Virgo (V1)). These default to their design sensitivity IFOs = [tupak.gw.detector.get_interferometer_with_fake_noise_and_injection( name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, time_duration=time_duration, sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1']] # Set up prior, which is a dictionary # By default we will sample all terms in the signal models. However, this will take a long time for the calculation, # so for this example we will set almost all of the priors to be equall to their injected values. This implies the # prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to # not sample any parameter that has a delta-function prior. # The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters # that will be included in the sampler. If we do nothing, then the default priors get used. priors = tupak.gw.prior.BBHPriorSet() priors['geocent_time'] = tupak.core.prior.Uniform( minimum=injection_parameters['geocent_time'] - 1, maximum=injection_parameters['geocent_time'] + 1, name='geocent_time', latex_label='$t_c$') for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', 'ra', 'dec', 'geocent_time', 'phase']: priors[key] = injection_parameters[key] # Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator likelihood = tupak.GravitationalWaveTransient(interferometers=IFOs, waveform_generator=waveform_generator, time_marginalization=False, phase_marginalization=False, distance_marginalization=False, prior=priors) # Run sampler. In this case we're going to use the `dynesty` sampler result = tupak.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, injection_parameters=injection_parameters, outdir=outdir, label=label) # make some plots of the outputs result.plot_corner()