#!/usr/bin/env python """ Example of how to use the Reduced Order Quadrature method (see Smith et al., (2016) Phys. Rev. D 94, 044031) for a Binary Black hole simulated signal in Gaussian noise. This requires files specifying the appropriate basis weights. These aren't shipped with Bilby, but are available on LDG clusters and from the public repository https://git.ligo.org/lscsoft/ROQ_data. """ import numpy as np import bilby outdir = 'outdir' label = 'roq' # The ROQ bases can be given an overall scaling. # Note how this is applied to durations, frequencies and masses. scale_factor = 1.6 # Load in the pieces for the linear part of the ROQ. Note you will need to # adjust the filenames here to the correct paths on your machine basis_matrix_linear = np.load("B_linear.npy").T freq_nodes_linear = np.load("fnodes_linear.npy") * scale_factor # Load in the pieces for the quadratic part of the ROQ basis_matrix_quadratic = np.load("B_quadratic.npy").T freq_nodes_quadratic = np.load("fnodes_quadratic.npy") * scale_factor # Load the parameters describing the valid parameters for the basis. params = np.genfromtxt("params.dat", names=True) # Get scaled ROQ quantities minimum_chirp_mass = params['chirpmassmin'] / scale_factor maximum_chirp_mass = params['chirpmassmax'] / scale_factor minimum_component_mass = params['compmin'] / scale_factor np.random.seed(170808) duration = 4 / scale_factor sampling_frequency = 2048 * scale_factor injection_parameters = dict( mass_1=36.0, mass_2=29.0, a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., theta_jn=0.4, psi=0.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', reference_frequency=20. * scale_factor) waveform_generator = bilby.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=waveform_arguments, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) ifos.set_strain_data_from_power_spectral_densities( sampling_frequency=sampling_frequency, duration=duration, start_time=injection_parameters['geocent_time'] - 3 / scale_factor) ifos.inject_signal(waveform_generator=waveform_generator, parameters=injection_parameters) for ifo in ifos: ifo.minimum_frequency = 20 * scale_factor # make ROQ waveform generator search_waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_roq, waveform_arguments=dict( frequency_nodes_linear=freq_nodes_linear, frequency_nodes_quadratic=freq_nodes_quadratic, reference_frequency=20. * scale_factor, waveform_approximant='IMRPhenomPv2'), parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) # Here we add constraints on chirp mass and mass ratio to the prior, these are # determined by the domain of validity of the ROQ basis. priors = bilby.gw.prior.BBHPriorDict() for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'theta_jn', 'phase', 'psi', 'ra', 'dec', 'phi_12', 'phi_jl', 'luminosity_distance']: priors[key] = injection_parameters[key] for key in ['mass_1', 'mass_2']: priors[key].minimum = max(priors[key].minimum, minimum_component_mass) priors['chirp_mass'] = bilby.core.prior.Uniform( name='chirp_mass', minimum=float(minimum_chirp_mass), maximum=float(maximum_chirp_mass)) priors['mass_ratio'] = bilby.core.prior.Uniform(0.125, 1, name='mass_ratio') priors['geocent_time'] = bilby.core.prior.Uniform( injection_parameters['geocent_time'] - 0.1, injection_parameters['geocent_time'] + 0.1, latex_label='$t_c$', unit='s') likelihood = bilby.gw.likelihood.ROQGravitationalWaveTransient( interferometers=ifos, waveform_generator=search_waveform_generator, linear_matrix=basis_matrix_linear, quadratic_matrix=basis_matrix_quadratic, priors=priors, roq_params=params, roq_scale_factor=scale_factor) # write the weights to file so they can be loaded multiple times likelihood.save_weights('weights.npz') # remove the basis matrices as these are big for longer bases del basis_matrix_linear, basis_matrix_quadratic # load the weights from the file likelihood = bilby.gw.likelihood.ROQGravitationalWaveTransient( interferometers=ifos, waveform_generator=search_waveform_generator, weights='weights.npz', priors=priors) result = bilby.run_sampler( likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500, injection_parameters=injection_parameters, outdir=outdir, label=label) # Make a corner plot. result.plot_corner()