#!/usr/bin/env python """ Example of how to use the Reduced Order Quadrature method (see Smith et al., (2016) Phys. Rev. D 94, 044031) for a Binary Black hole simulated signal in Gaussian noise. This requires files specifying the appropriate basis weights. These aren't shipped with Bilby, but are available on LDG clusters and from the public repository https://git.ligo.org/lscsoft/ROQ_data. """ from __future__ import division, print_function import numpy as np import bilby outdir = 'outdir' label = 'roq' # Load in the pieces for the linear part of the ROQ. Note you will need to # adjust the filenames here to the correct paths on your machine basis_matrix_linear = np.load("B_linear.npy").T freq_nodes_linear = np.load("fnodes_linear.npy") # Load in the pieces for the quadratic part of the ROQ basic_matrix_quadratic = np.load("B_quadratic.npy").T freq_nodes_quadratic = np.load("fnodes_quadratic.npy") np.random.seed(170808) duration = 4 sampling_frequency = 2048 injection_parameters = dict( chirp_mass=36., mass_ratio=0.9, a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., theta_jn=0.4, psi=0.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', reference_frequency=20., minimum_frequency=20.) waveform_generator = bilby.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=waveform_arguments, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) ifos.set_strain_data_from_power_spectral_densities( sampling_frequency=sampling_frequency, duration=duration, start_time=injection_parameters['geocent_time'] - 3) ifos.inject_signal(waveform_generator=waveform_generator, parameters=injection_parameters) # make ROQ waveform generator search_waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.roq, waveform_arguments=dict(frequency_nodes_linear=freq_nodes_linear, frequency_nodes_quadratic=freq_nodes_quadratic, reference_frequency=20., minimum_frequency=20., approximant='IMRPhenomPv2'), parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) priors = bilby.gw.prior.BBHPriorDict() for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'theta_jn', 'phase', 'psi', 'ra', 'dec', 'phi_12', 'phi_jl', 'luminosity_distance']: priors[key] = injection_parameters[key] priors.pop('mass_1') priors.pop('mass_2') priors['chirp_mass'] = bilby.core.prior.Uniform( 15, 40, latex_label='$\\mathcal{M}$') priors['mass_ratio'] = bilby.core.prior.Uniform(0.5, 1, latex_label='$q$') priors['geocent_time'] = bilby.core.prior.Uniform( injection_parameters['geocent_time'] - 0.1, injection_parameters['geocent_time'] + 0.1, latex_label='$t_c$', unit='s') likelihood = bilby.gw.likelihood.ROQGravitationalWaveTransient( interferometers=ifos, waveform_generator=search_waveform_generator, linear_matrix=basis_matrix_linear, quadratic_matrix=basic_matrix_quadratic, prior=priors) result = bilby.run_sampler( likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500, injection_parameters=injection_parameters, outdir=outdir, label=label) # Make a corner plot. result.plot_corner()