There will be maintenance performed on git.ligo.org, chat.ligo.org, containers.lig.org, and docs.ligo.org starting at 9am PDT on Tuesday 18th August 2020. There will be an extremely small period of downtime at the start of the maintenance window as various services are restarted. Please address any comments, questions, or concerns to computing-help@igwn.org.

Commit 6cb756cc authored by moritz's avatar moritz

Revert "Revert "Moritz Huebner: Removed default parameters for sampling...

Revert "Revert "Moritz Huebner: Removed default parameters for sampling frequency and time duration in the waveform generator""

This reverts commit 91e90f0d.
parent 91e90f0d
Pipeline #19180 failed with stages
in 18 seconds
......@@ -23,10 +23,10 @@ injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5
waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375, dec=-1.2108)
# Create the waveform_generator using a LAL BinaryBlackHole source function
waveform_generator = tupak.waveform_generator.WaveformGenerator(
sampling_frequency=sampling_frequency, time_duration=time_duration,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters=injection_parameters)
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration,
sampling_frequency=sampling_frequency,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters=injection_parameters)
hf_signal = waveform_generator.frequency_domain_strain()
# Set up interferometers.
......
......@@ -26,11 +26,10 @@ def sine_gaussian(f, A, f0, tau, phi0, geocent_time, ra, dec, psi):
# We now define some parameters that we will inject and then a waveform generator
injection_parameters = dict(A=1e-21, f0=10, tau=1, phi0=0, geocent_time=0,
ra=0, dec=0, psi=0)
waveform_generator = tupak.waveform_generator.WaveformGenerator(
frequency_domain_source_model=sine_gaussian,
sampling_frequency=sampling_frequency,
time_duration=time_duration,
parameters=injection_parameters)
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration,
sampling_frequency=sampling_frequency,
frequency_domain_source_model=sine_gaussian,
parameters=injection_parameters)
hf_signal = waveform_generator.frequency_domain_strain()
# Set up interferometers.
......
......@@ -19,10 +19,10 @@ injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5
waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375, dec=-1.2108)
# Create the waveform_generator using a LAL BinaryBlackHole source function
waveform_generator = tupak.waveform_generator.WaveformGenerator(
sampling_frequency=sampling_frequency, time_duration=time_duration,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters=injection_parameters)
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration,
sampling_frequency=sampling_frequency,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters=injection_parameters)
hf_signal = waveform_generator.frequency_domain_strain()
# Set up interferometers.
......
......@@ -15,9 +15,10 @@ def main():
label = 'injection'
# Create the waveform generator
waveform_generator = tupak.waveform_generator.WaveformGenerator(
frequency_domain_source_model=tupak.source.lal_binary_black_hole, sampling_frequency=2048, time_duration=4,
parameters={'reference_frequency': 50.0, 'waveform_approximant': 'IMRPhenomPv2'})
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=4, sampling_frequency=2048,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters={'reference_frequency': 50.0,
'waveform_approximant': 'IMRPhenomPv2'})
# Define the prior
# Merger time is some time in 2018, shame LIGO will never see it...
......
......@@ -20,10 +20,10 @@ injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5
waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375, dec=-1.2108)
# Create the waveform_generator using a LAL BinaryBlackHole source function
waveform_generator = tupak.waveform_generator.WaveformGenerator(
sampling_frequency=sampling_frequency, time_duration=time_duration,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters=injection_parameters)
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration,
sampling_frequency=sampling_frequency,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters=injection_parameters)
hf_signal = waveform_generator.frequency_domain_strain()
# Set up interferometers.
......
......@@ -30,7 +30,9 @@ parameters['ra'] = 0
parameters['dec'] = 0
parameters['psi'] = 0
wg = tupak.waveform_generator.WaveformGenerator(time_domain_source_model=time_domain_sine_gaussian, time_duration=2000, sampling_frequency=1000, parameters=parameters)
wg = tupak.waveform_generator.WaveformGenerator(time_duration=2000, sampling_frequency=1000,
time_domain_source_model=time_domain_sine_gaussian,
parameters=parameters)
wg.parameters = parameters
plt.plot(wg.frequency_array, wg.frequency_domain_strain()['plus'])
plt.xlim(4, 6)
......
......@@ -44,11 +44,12 @@ prior['luminosity_distance'] = tupak.prior.PowerLaw(
# creates the frequency-domain strain. In this instance, we are using the
# `lal_binary_black_hole model` source model. We also pass other parameters:
# the waveform approximant and reference frequency.
waveform_generator = tupak.waveform_generator.WaveformGenerator(
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
sampling_frequency=interferometers[0].sampling_frequency,
time_duration=interferometers[0].duration,
parameters={'waveform_approximant': 'IMRPhenomPv2', 'reference_frequency': 50})
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=interferometers[0].duration,
sampling_frequency=interferometers[
0].sampling_frequency,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters={'waveform_approximant': 'IMRPhenomPv2',
'reference_frequency': 50})
# In this step, we define the likelihood. Here we use the standard likelihood
# function, passing it the data and the waveform generator.
......
......@@ -68,9 +68,9 @@ fig.savefig('{}/data.png'.format(outdir))
# name doesn't make so much sense. But essentially this is an objects that
# can generate a signal. We give it information on how to make the time series
# and the model() we wrote earlier.
waveform_generator = tupak.waveform_generator.WaveformGenerator(
sampling_frequency=sampling_frequency, time_duration=time_duration,
time_domain_source_model=model)
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration,
sampling_frequency=sampling_frequency,
time_domain_source_model=model)
# Now lets instantiate a version of out Likelihood, giving it the time, data
......
......@@ -32,9 +32,8 @@ simulation_parameters = dict(
psi=2.659
)
waveform_generator = WaveformGenerator(frequency_domain_source_model=tupak.source.lal_binary_black_hole,
sampling_frequency=sampling_frequency,
time_duration=time_duration,
waveform_generator = WaveformGenerator(time_duration=time_duration, sampling_frequency=sampling_frequency,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters=simulation_parameters)
signal = waveform_generator.frequency_domain_strain()
......
......@@ -17,8 +17,8 @@ def gaussian_frequency_domain_strain_2(frequency_array, a, m, s, ra, dec, geocen
class TestWaveformGeneratorInstantiationWithoutOptionalParameters(unittest.TestCase):
def setUp(self):
self.waveform_generator = tupak.waveform_generator.WaveformGenerator(
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.waveform_generator = tupak.waveform_generator.WaveformGenerator(1, 4096,
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.simulation_parameters = dict(amplitude=1e-21, mu=100, sigma=1,
ra=1.375,
dec=-1.2108,
......@@ -52,8 +52,8 @@ class TestWaveformGeneratorInstantiationWithoutOptionalParameters(unittest.TestC
class TestParameterSetter(unittest.TestCase):
def setUp(self):
self.waveform_generator = tupak.waveform_generator.WaveformGenerator(
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.waveform_generator = tupak.waveform_generator.WaveformGenerator(1, 4096,
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.simulation_parameters = dict(amplitude=1e-21, mu=100, sigma=1,
ra=1.375,
dec=-1.2108,
......@@ -91,8 +91,8 @@ class TestParameterSetter(unittest.TestCase):
class TestSourceModelSetter(unittest.TestCase):
def setUp(self):
self.waveform_generator = tupak.waveform_generator.WaveformGenerator(
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.waveform_generator = tupak.waveform_generator.WaveformGenerator(1, 4096,
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.waveform_generator.frequency_domain_source_model = gaussian_frequency_domain_strain_2
self.simulation_parameters = dict(amplitude=1e-21, mu=100, sigma=1,
ra=1.375,
......
......@@ -150,12 +150,12 @@ def get_binary_black_hole_likelihood(interferometers):
likelihood: tupak.likelihood.Likelihood
The likelihood to pass to `run_sampler`
"""
waveform_generator = tupak.waveform_generator.WaveformGenerator(
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
sampling_frequency=interferometers[0].sampling_frequency,
time_duration=interferometers[0].duration,
parameters={'waveform_approximant': 'IMRPhenomPv2',
'reference_frequency': 50})
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=interferometers[0].duration,
sampling_frequency=interferometers[
0].sampling_frequency,
frequency_domain_source_model=tupak.source.lal_binary_black_hole,
parameters={'waveform_approximant': 'IMRPhenomPv2',
'reference_frequency': 50})
likelihood = tupak.likelihood.Likelihood(
interferometers, waveform_generator)
return likelihood
......
......@@ -23,8 +23,8 @@ class WaveformGenerator(object):
"""
def __init__(self, frequency_domain_source_model=None, time_domain_source_model=None, sampling_frequency=4096, time_duration=1,
parameters=None):
def __init__(self, time_duration, sampling_frequency, frequency_domain_source_model=None,
time_domain_source_model=None, parameters=None):
self.time_duration = time_duration
self.sampling_frequency = sampling_frequency
self.frequency_domain_source_model = frequency_domain_source_model
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment