Skip to content
Snippets Groups Projects

Resolve "Introduce conditional prior sets"

Merged Moritz Huebner requested to merge 270-introduce-correlated-prior-sets into master
Compare and Show latest version
11 files
+ 192
47
Compare changes
  • Side-by-side
  • Inline
Files
11
@@ -39,6 +39,11 @@ class Sampler(object):
The result class to use. By default, `bilby.core.result.Result` is used,
but objects which inherit from this class can be given providing
additional methods.
soft_init: bool, optional
Switch to enable a soft initialization that prevents the likelihood
from being tested before running the sampler. This is relevant when
using custom likelihoods that must NOT be initialized on the main thread
when using multiprocessing, e.g. when using tensorflow in the likelihood.
**kwargs: dict
Additional keyword arguments
@@ -86,7 +91,7 @@ class Sampler(object):
self, likelihood, priors, outdir='outdir', label='label',
use_ratio=False, plot=False, skip_import_verification=False,
injection_parameters=None, meta_data=None, result_class=None,
likelihood_benchmark=False,
likelihood_benchmark=False, soft_init=False,
**kwargs):
self.likelihood = likelihood
if isinstance(priors, PriorDict):
@@ -108,9 +113,12 @@ class Sampler(object):
self._fixed_parameter_keys = list()
self._constraint_parameter_keys = list()
self._initialise_parameters()
self._verify_parameters()
self._time_likelihood()
self._verify_use_ratio()
if not soft_init:
self._verify_parameters()
self._time_likelihood()
self._verify_use_ratio()
self.kwargs = kwargs
self._check_cached_result()
Loading