Skip to content
Snippets Groups Projects

Resolve #430 (Add normalisation flag to constrained prior)

Merged Bruce Edelman requested to merge bruce.edelman/bilby:constraint into master
Compare and Show latest version
1 file
+ 17
2
Compare changes
  • Side-by-side
  • Inline
+ 17
2
@@ -381,8 +381,15 @@ class PriorDict(dict):
@lru_cache()
def normalize_constraint_factor(self, keys):
samples = self.sample_subset(keys=keys, size=1000)
min_accept = 50
sampling_chunk = 250
samples = self.sample_subset(keys=keys, size=sampling_chunk)
keep = np.array(self.evaluate_constraints(samples))
while np.count_nonzero(keep) < min_accept:
new_samples = self.sample_subset(keys=keys, size=sampling_chunk)
for key in samples:
samples[key] = np.concatenate(samples[key], new_samples[key])
keep = np.array(self.evaluate_constraints(samples))
return len(keep) / np.count_nonzero(keep)
def prob(self, sample, **kwargs):
@@ -444,6 +451,14 @@ class PriorDict(dict):
ln_prob = np.sum([self[key].ln_prob(sample[key])
for key in sample], axis=axis)
ratio = 1
outsample = self.conversion_function(sample)
# Check if there is a constraint in sample/outsample
if (np.any(isinstance([self[key] for key in sample.keys()], Constraint)) or
np.any(isinstance([self[key] for key in outsample.keys()], Constraint))):
# If constraint exists in keys, caclulate the cached normalization constant
ratio = self.normalize_constraint_factor(sample.keys())
if np.all(np.isinf(ln_prob)):
return ln_prob
else:
@@ -455,7 +470,7 @@ class PriorDict(dict):
else:
constrained_ln_prob = -np.inf * np.ones_like(ln_prob)
keep = np.array(self.evaluate_constraints(sample), dtype=bool)
constrained_ln_prob[keep] = ln_prob[keep]
constrained_ln_prob[keep] = ln_prob[keep] + np.log(ratio)
return constrained_ln_prob
def rescale(self, keys, theta):
Loading