... | @@ -2,7 +2,21 @@ |
... | @@ -2,7 +2,21 @@ |
|
|
|
|
|
All runs can be found [on cit](https://ldas-jobs.ligo.caltech.edu/~gregory.ashton/bilby_tests/dynesty/).
|
|
All runs can be found [on cit](https://ldas-jobs.ligo.caltech.edu/~gregory.ashton/bilby_tests/dynesty/).
|
|
|
|
|
|
Runs are generated by drawing simulated signals in Gaussian (aLIGO noise curve) data for H1 and L1. The prior distribution from which simulation values are selected is
|
|
Runs are generated by drawing simulated signals in Gaussian (aLIGO noise curve) data for H1 and L1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Then, for the analysis the same prior is used **except** that the `geocent_time` prior is set to
|
|
|
|
|
|
|
|
```
|
|
|
|
geocent_time = Uniform(minimum=-0.05, maximum=0.05, name='geocent_time', latex_label='$t_c$', unit='$s$')
|
|
|
|
```
|
|
|
|
|
|
|
|
in all cases we use the `bilby.gw.likelihood.GravitationalWaveTransientLikelihood` with no marginalisation.
|
|
|
|
|
|
|
|
## Run 1: `nlive=2000` and `walks=50`
|
|
|
|
|
|
|
|
For the first run, we doa no-spin run, i.e. the prior is given by
|
|
|
|
|
|
```python
|
|
```python
|
|
chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$')
|
|
chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$')
|
... | @@ -21,17 +35,6 @@ phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi) |
... | @@ -21,17 +35,6 @@ phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi) |
|
luminosity_distance = PowerLaw(alpha=2, minimum=100, maximum=5000, name='luminosity_distance')
|
|
luminosity_distance = PowerLaw(alpha=2, minimum=100, maximum=5000, name='luminosity_distance')
|
|
geocent_time = 0
|
|
geocent_time = 0
|
|
```
|
|
```
|
|
|
|
|
|
Then, for the analysis the same prior is used **except** that the `geocent_time` prior is set to
|
|
|
|
|
|
|
|
```
|
|
|
|
geocent_time = Uniform(minimum=-0.05, maximum=0.05, name='geocent_time', latex_label='$t_c$', unit='$s$')
|
|
|
|
```
|
|
|
|
|
|
|
|
in all cases we use the `bilby.gw.likelihood.GravitationalWaveTransientLikelihood` with no marginalisation.
|
|
|
|
|
|
|
|
## Run 1: `nlive=2000` and `walks=50`
|
|
|
|
|
|
|
|
Here is the full set of sampler kwargs:
|
|
Here is the full set of sampler kwargs:
|
|
|
|
|
|
```python
|
|
```python
|
... | @@ -50,6 +53,43 @@ Here is the full set of sampler kwargs: |
... | @@ -50,6 +53,43 @@ Here is the full set of sampler kwargs: |
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
## Run 2
|
|
|
|
|
|
|
|
```python
|
|
|
|
chirp_mass = Uniform(name='chirp_mass', minimum=25, maximum=100, unit='$M_{\\odot}$')
|
|
|
|
mass_ratio = Uniform(name='mass_ratio', minimum=0.125, maximum=1)
|
|
|
|
a_1 = Uniform(name='a_1', minimum=0, maximum=0.8)
|
|
|
|
a_2 = Uniform(name='a_2', minimum=0, maximum=0.8)
|
|
|
|
tilt_1 = Sine(name='tilt_1')
|
|
|
|
tilt_2 = Sine(name='tilt_2')
|
|
|
|
phi_12 = Uniform(name='phi_12', minimum=0, maximum=2 * np.pi)
|
|
|
|
phi_jl = Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi)
|
|
|
|
dec = Cosine(name='dec')
|
|
|
|
ra = Uniform(name='ra', minimum=0, maximum=2 * np.pi)
|
|
|
|
iota = Sine(name='iota')
|
|
|
|
psi = Uniform(name='psi', minimum=0, maximum=np.pi)
|
|
|
|
phase = Uniform(name='phase', minimum=0, maximum=2 * np.pi)
|
|
|
|
luminosity_distance = PowerLaw(alpha=2, minimum=100, maximum=5000, name='luminosity_distance')
|
|
|
|
geocent_time = 0
|
|
|
|
```
|
|
|
|
|
|
|
|
The set of kwargs are
|
|
|
|
|
|
|
|
```
|
|
|
|
{'bound': 'multi', 'sample': 'rwalk', 'verbose': True, 'check_point_delta_t': 600, 'nlive': 2000, 'first_update': None, 'npdim': None, 'rstate': None, 'queue_size': None, 'pool': None, 'use_pool': None, 'live_points': None, 'logl_args': None, 'logl_kwargs': None, 'ptform_args': None, 'ptform_kwargs': None, 'enlarge': None, 'bootstrap': None, 'vol_dec': 0.5, 'vol_check': 2.0, 'facc': 0.5, 'slices': 5, 'walks': 50, 'update_interval': 1200, 'print_func': <bound method Dynesty._print_func of <bilby.core.sampler.dynesty.Dynesty object at 0x2b07df2b4358>>, 'dlogz': 0.1, 'maxiter': None, 'maxcall': None, 'logl_max': inf, 'add_live': True, 'print_progress': True, 'save_bounds': True}
|
|
|
|
```
|
|
|
|
|
|
|
|
### PP plot
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
### Sampling time
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
### SNR distribition
|
|
|
|
|
|
|
|

|
|
## Old runs
|
|
## Old runs
|
|
|
|
|
|
The following are some old results, leaving here in case we want to come back to them.
|
|
The following are some old results, leaving here in case we want to come back to them.
|
... | | ... | |