diff --git a/gstlal-inspiral/bin/gstlal_inspiral_mass_model b/gstlal-inspiral/bin/gstlal_inspiral_mass_model index dc5fb727c4ddea3fe5283951b3336bd8775279cd..2ccd15a00ce1ac8f629500f8f9fdc436d56b307d 100755 --- a/gstlal-inspiral/bin/gstlal_inspiral_mass_model +++ b/gstlal-inspiral/bin/gstlal_inspiral_mass_model @@ -24,8 +24,7 @@ from glue.ligolw import lsctables, param as ligolw_param, array as ligolw_array from glue.ligolw import utils as ligolw_utils from glue.ligolw.utils import process as ligolw_process import lal.series -from gstlal.stats.inspiral_lr import TYPICAL_HORIZON_DISTANCE -from gstlal import svd_bank +from lal import rate @ligolw_array.use_in @ligolw_param.use_in @@ -34,43 +33,43 @@ class LIGOLWContentHandler(ligolw.LIGOLWContentHandler): pass parser = argparse.ArgumentParser(description = "Create analytic mass models for prior weighting of templates") -parser.add_argument("--svd-bank", metavar='name', type=str, help='The input svd bank file name. Can be specified multiple times', action="append", required = True) -parser.add_argument("--reference-psd", metavar='name', type=str, help='The input psd file name', required = True) -parser.add_argument("--instrument", metavar='name', type=str, help='The instrument to use, e.g., H1', required = True) +parser.add_argument("--template-bank", metavar='name', type=str, help='The input template bank file name.', required = True) parser.add_argument("--output", metavar='name', type=str, help='The output file name', default = "inspiral_mass_model.h5") -parser.add_argument("--model", metavar='name', type=str, help='Mass model. Options are salpeter, uniform-in-template') +parser.add_argument("--model", metavar='name', type=str, help='Mass model. Options are: salpeter. If you want another one, submit a patch.') +parser.add_argument("--verbose", help='Be verbose', action="store_true") options = parser.parse_args() -# Read the PSD file -psd = lal.series.read_psd_xmldoc(ligolw_utils.load_filename(options.reference_psd, verbose = True, contenthandler = lal.series.PSDContentHandler))[options.instrument] +# Read the template bank file +xmldoc = ligolw_utils.load_filename(options.template_bank, verbose = options.verbose, contenthandler = LIGOLWContentHandler) +sngl_inspiral_table = lsctables.SnglInspiralTable.get_table(xmldoc) +mass1 = sngl_inspiral_table.get_column("mass1") +mass2 = sngl_inspiral_table.get_column("mass2") +num_templates = len(mass1) +num_bins = max(2, int((num_templates / 100.)**.5)) +min_mass = min(min(mass1), min(mass2)) - 1.e-6 +max_mass = max(max(mass1), max(mass2)) + 1.e-6 +massBA = rate.BinnedDensity(rate.NDBins((rate.LogarithmicBins(min_mass, max_mass, num_bins), rate.LogarithmicBins(min_mass, max_mass, num_bins)))) +print min_mass, max_mass +for m1, m2 in zip(mass1, mass2): + massBA.count[(m1, m2)] += 1 + massBA.count[(m2, m1)] += 1 +rate.filter_array(massBA.array, rate.gaussian_window(1.5, 1.5, sigma = 5)) +# Assign the proper mass probabilities ids = {} -for svdbank in options.svd_bank: - banks = {options.instrument:[]} - sngl_inspiral_table = [] - for n, bank in enumerate(svd_bank.read_banks(svdbank, contenthandler = LIGOLWContentHandler, verbose = True)): - banks[options.instrument].append(bank) - sngl_inspiral_table.extend(bank.sngl_inspiral_table) - - horizon_distance_function = svd_bank.make_horizon_distance_func(banks) - horizon_distance = horizon_distance_function(psd)[0] - for row in sngl_inspiral_table: - assert row.template_id not in ids - if options.model == "salpeter": - ids[row.template_id] = numpy.log(row.mass1**-2.35) - elif options.model == "uniform-in-template": - # the LR code has a horizon distance term to make each - # template uniform you have to undo it. - ids[row.template_id] = numpy.log((horizon_distance / TYPICAL_HORIZON_DISTANCE)**3) - else: - raise ValueError("Invalid mass model") +for row in sngl_inspiral_table: + assert row.template_id not in ids + if options.model == "salpeter": + ids[row.template_id] = numpy.log(row.mass1**-2.35 / massBA[row.mass1, row.mass2]) + else: + raise ValueError("Invalid mass model") coefficients = numpy.zeros((1, 1, max(ids)+1), dtype=float) for tid in ids: coefficients[0,0,tid] = ids[tid] +# Write it out f = h5py.File(options.output, "w") -print coefficients # put in a dummy interval for the piecewise polynomials in SNR f.create_dataset("SNR", data = numpy.array([0., 100.])) f.create_dataset("coefficients", data = coefficients, compression="gzip")