diff --git a/gstlal-inspiral/python/stats/inspiral_lr.py b/gstlal-inspiral/python/stats/inspiral_lr.py index 58f9ceabd7c0acaae06125aa7abed160e4a7b342..13e4e77844cd94ba9d3e5eb22933eb569200f7a9 100644 --- a/gstlal-inspiral/python/stats/inspiral_lr.py +++ b/gstlal-inspiral/python/stats/inspiral_lr.py @@ -729,8 +729,15 @@ class LnNoiseDensity(LnLRDensity): lnP += self.coinc_rates.lnP_instruments(**triggers_per_second_per_template)[frozenset(snrs)] # evaluate dt and dphi parameters - # NOTE: uniform and normalized so that the log should be zero, but there is no point in doing that - # lnP += 0 + # NOTE: this assumes uniform in dt and dphi. The dt part is + # approximate and should be detector dependent and involve a + # slightly intracate calculation since coincidence must be + # mutual, but we igore that in this normalization and get it + # close enough. + # ( 1 / \Deta T ) ( 1 / \Delta \phi) for each detector + # hardcode \Delta T = 20 ms + # + lnP += (1. / 0.020 * 1. / (2. * numpy.pi))**(len(snrs) - 1) # evaluate the rest interps = self.interps