diff --git a/gstlal-inspiral/python/stats/inspiral_extrinsics.py b/gstlal-inspiral/python/stats/inspiral_extrinsics.py index 5cef2bc92f6a295538fc28c7f10757165005c4d5..a5369ad00d0b163cb42dd885f8a948e880842457 100644 --- a/gstlal-inspiral/python/stats/inspiral_extrinsics.py +++ b/gstlal-inspiral/python/stats/inspiral_extrinsics.py @@ -40,7 +40,6 @@ import numpy import os import random from scipy import stats -import scipy, scipy.signal import sys import h5py @@ -1307,19 +1306,19 @@ class DynamicBins(object): dgrp = f.create_group("dynbins") begroup = dgrp.create_group("bin_edges") for i, bin_edge in enumerate(self.bin_edges): - begroup.create_dataset("%d" % i, data = bin_edge) + begroup.create_dataset("%d" % i, data = bin_edge, compression="gzip") dgrp.attrs["num_points"] = self.num_points dgrp.attrs["total_prob"] = self.total_prob dgrp.attrs["num_cells"] = self.num_cells bgrp = f.create_group("bins") lower, upper, parent, right, left, prob = self.__serialize() - bgrp.create_dataset("lower", data = lower) - bgrp.create_dataset("upper", data = upper) - bgrp.create_dataset("parent", data = parent) - bgrp.create_dataset("right", data = right) - bgrp.create_dataset("left", data = left) - bgrp.create_dataset("prob", data = prob) + bgrp.create_dataset("lower", data = lower, compression="gzip") + bgrp.create_dataset("upper", data = upper, compression="gzip") + bgrp.create_dataset("parent", data = parent, compression="gzip") + bgrp.create_dataset("right", data = right, compression="gzip") + bgrp.create_dataset("left", data = left, compression="gzip") + bgrp.create_dataset("prob", data = prob, compression="gzip") # @@ -1366,6 +1365,9 @@ class IFFT(object): return numpy.array(self.tvec[length].data, dtype=float) +def tukeywindow(data, alpha = 0.25): + return lal.CreateTukeyREAL8Window(len(data), alpha).data.data + class RandomSource(object): def __init__(self, horizons, snr_thresh = 4): @@ -1480,7 +1482,7 @@ class RandomSource(object): ASD = (10**self.psd_poly(F(mchirp, t)))**.5 return (PI * M * F(mchirp, t) / ASD)**(2./3.) - w = scipy.signal.tukey(len(self.t), alpha = 0.25) * A(mchirp, self.t) * numpy.cos(PHI(mchirp, self.t, phi)) + w = tukeywindow(self.t, alpha = 0.25) * A(mchirp, self.t) * numpy.cos(PHI(mchirp, self.t, phi)) return w / self.match(w,w)**.5 def noise(self):