diff --git a/gstlal-inspiral/bin/gstlal_inspiral_mass_model b/gstlal-inspiral/bin/gstlal_inspiral_mass_model index d18284215933b8af463723dff514e3be354cfc56..e7959e1cfdc072b6ddfaafa6b4b84b8fa156f058 100755 --- a/gstlal-inspiral/bin/gstlal_inspiral_mass_model +++ b/gstlal-inspiral/bin/gstlal_inspiral_mass_model @@ -91,8 +91,9 @@ for row in sngl_inspiral_table: mchirps[row.template_id] = mchirp if options.model == "narrow-bns": - sigma = 0.04 - mean = 1.20 + # comes from component mass mean 1.33, std 0.09, and redshift 0.02 + sigma = 0.055 + mean = 1.18 prob[row.template_id] = 1. / (2 * numpy.pi * sigma**2)**.5 * numpy.exp(-(mchirp - mean)**2 / 2. / sigma**2) elif options.model == "broad-bns": @@ -123,7 +124,8 @@ for row in sngl_inspiral_table: # BNS portion # - # assume a 0.15 solar mass std deviation, this should capture both population distribution and snr effects + # assume a 0.35 solar mass std deviation in component masses to make it very broad, this should capture both population distribution and snr effects. This gives mean-mchirp = 1.179 and sigma-mchirp =0.186. Taking z = 0.02, and making std extra broad, we use: + sigma = 0.25 mean = 1.2 bnsprob = 1. / (2 * numpy.pi * sigma**2)**.5 * numpy.exp(-(mchirp - mean)**2 / 2. / sigma**2)