diff --git a/gstlal-inspiral/python/chirptime.py b/gstlal-inspiral/python/chirptime.py
index 98e1497aa34d93f6557e63dfb977b632d8891dcf..fe4e04e13013dff4509f2356913c315fb39ff028 100644
--- a/gstlal-inspiral/python/chirptime.py
+++ b/gstlal-inspiral/python/chirptime.py
@@ -1,159 +1,158 @@
-# Copyright (C) 2015 Jolien Creighton
-#
-# This program is free software; you can redistribute it and/or modify it
-# under the terms of the GNU General Public License as published by the
-# Free Software Foundation; either version 2 of the License, or (at your
-# option) any later version.
-#
-# This program is distributed in the hope that it will be useful, but
-# WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
-# Public License for more details.
-#
-# You should have received a copy of the GNU General Public License along
-# with this program; if not, write to the Free Software Foundation, Inc.,
-# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
-
+# Copyright (C) 2015 Jolien Creighton
+#
+# This program is free software; you can redistribute it and/or modify it
+# under the terms of the GNU General Public License as published by the
+# Free Software Foundation; either version 2 of the License, or (at your
+# option) any later version.
+#
+# This program is distributed in the hope that it will be useful, but
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
+# Public License for more details.
+#
+# You should have received a copy of the GNU General Public License along
+# with this program; if not, write to the Free Software Foundation, Inc.,
+# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
+
 ## @file
 
 ## @package chirptime
 
-import sys
-from math import pi
-import numpy
-import lalsimulation as lalsim
-import warnings
-
-def tmplttime(f0, m1, m2, j1, j2, approx):
-	dt = 1.0 / 16384.0
-	approximant = lalsim.GetApproximantFromString(approx)
-	hp, hc = lalsim.SimInspiralChooseTDWaveform(
-                	phiRef=0,
-                	deltaT=dt,
-                	m1=m1,
-                	m2=m2,
-                	s1x=0,
-                	s1y=0,
-                	s1z=j1,
-                	s2x=0,
-                	s2y=0,
-                	s2z=j2,
-                	f_min=f0,
-                	f_ref=0,
-                	r=1,
-                	i=0,
-                	lambda1=0,
-                	lambda2=0,
-                	waveFlags=None,
-                	nonGRparams=None,
-                	amplitudeO=0,
-                	phaseO=0,
-                	approximant=approximant)
-	h = numpy.array(hp.data.data, dtype=complex)
-	h += 1j * numpy.array(hc.data.data, dtype=complex)
-	try:
-		n = list(abs(h)).index(0)
-	except ValueError:
-		n = len(h)
-	return n * hp.deltaT
-
-
-GMsun = 1.32712442099e20 # heliocentric gravitational constant, m^2 s^-2
-G = 6.67384e-11 # Newtonian constant of gravitation, m^3 kg^-1 s^-2
-c = 299792458 # speed of light in vacuum (exact), m s^-1
-Msun = GMsun / G # solar mass, kg
-
-def velocity(f, M):
-	"""
-	Finds the orbital "velocity" corresponding to a gravitational
-	wave frequency.
-	"""
-	return (pi * G * M * f)**(1.0/3.0) / c
-
-def chirptime(f, M, nu, chi):
-	"""
-	Over-estimates the chirp time in seconds from a certain frequency.
-	Uses 2 pN chirp time from some starting frequency f in Hz
-	where all negative contributions are dropped.
-	"""
-	v = velocity(f, M)
-	tchirp = 1.0
-	tchirp += ((743.0/252.0) + (11.0/3.0)*nu) * v**2
-	tchirp += (226.0/15.0) * chi * v**3
-	tchirp += ((3058673.0/508032.0) + (5429.0/504.0)*nu + (617.0/72.0)*nu**2) * v**4
-	tchirp *= (5.0/(256.0*nu)) * (G*M/c**3) / v**8
-	return tchirp
-
-def ringf(M, j):
-	"""
-	Computes the approximate ringdown frequency in Hz.
-	Here j is the reduced Kerr spin parameter, j = c^2 a / G M.
-	"""
-	return (1.5251 - 1.1568 * (1 - j)**0.1292) * (c**3 / (2.0 * pi * G * M))
-
-def ringtime(M, j):
-	"""
-	Computes the black hole ringdown time in seconds.
-	Here j is the reduced Kerr spin parameter, j = c^2 a / G M.
-	"""
-	efolds = 11
-	# these are approximate expressions...
-	f = ringf(M, j)
-	Q = 0.700 + 1.4187 * (1 - j)**-0.4990
-	T = Q / (pi * f)
-	return efolds * T
-
-def mergetime(M):
-	"""
-	Over-estimates the time from ISCO to merger in seconds.
-	Assumes one last orbit at the maximum ISCO radius.
-	"""
-	# The maximum ISCO is for orbits about a Kerr hole with
-	# maximal counter rotation.  This corresponds to a radius
-	# of 9GM/c^2 and a orbital speed of ~ c/3.  Assume the plunge
-	# and merger takes one orbit from this point.
-	norbits = 1.0
-	v = c / 3.0
-	r = 9.0 * G * M / c**2
-	return norbits * (2.0 * pi * r / v)
-
-def overestimate_j_from_chi(chi):
-	"""
-	Overestimate final black hole spin
-	"""
-	return min(max(lalsim.SimIMREOBFinalMassSpin(1, 1, [0, 0, chi], [0, 0, chi], lalsim.GetApproximantFromString('SEOBNRv2'))[2], abs(chi)), 0.998)
-
-def imr_time(f, m1, m2, j1, j2, f_max = None):
-	"""
-	Returns an overestimate of the inspiral time and the
-	merger-ringdown time, both in seconds.  Here, m1 and m2
-	are the component masses in kg, j1 and j2 are the dimensionless
-	spin parameters of the components.
-	"""
-
-	if f_max is not None and f_max < f:
-		raise ValueError("f_max must either be None or greater than f")
-
-	# compute total mass and symmetric mass ratio
-	M = m1 + m2
-	nu = m1 * m2 / M**2
-
-	# compute spin parameters
-	#chi_s = 0.5 * (j1 + j2)
-	#chi_a = 0.5 * (j1 - j2)
-	#chi = (1.0 - (76.0/113.0)) * chi_s + ((m1 - m2) / M) * chi_a
-	# overestimate chi:
-	chi = max(j1, j2)
-
-	j = overestimate_j_from_chi(chi)
-
-	if f > ringf(M, j):
-		warnings.warn("f is greater than the ringdown frequency. This might not be what you intend to compute")
-
-	if f_max is None or f_max > ringf(M, j):
-		return chirptime(f, M, nu, chi) + mergetime(M) + ringtime(M, j)
-	else:
-		# Always be conservative and allow a merger time to be added to
-		# the end in case your frequency is above the last stable orbit
-		# but below the ringdown.
-		return imr_time(f, m1, m2, j1, j2) - imr_time(f_max, m1, m2, j1, j2)
+from math import pi
+import numpy
+import lalsimulation as lalsim
+import warnings
+
+def tmplttime(f0, m1, m2, j1, j2, approx):
+	dt = 1.0 / 16384.0
+	approximant = lalsim.GetApproximantFromString(approx)
+	hp, hc = lalsim.SimInspiralChooseTDWaveform(
+		phiRef=0,
+		deltaT=dt,
+		m1=m1,
+		m2=m2,
+		s1x=0,
+		s1y=0,
+		s1z=j1,
+		s2x=0,
+		s2y=0,
+		s2z=j2,
+		f_min=f0,
+		f_ref=0,
+		r=1,
+		i=0,
+		lambda1=0,
+		lambda2=0,
+		waveFlags=None,
+		nonGRparams=None,
+		amplitudeO=0,
+		phaseO=0,
+		approximant=approximant)
+	h = numpy.array(hp.data.data, dtype=complex)
+	h += 1j * numpy.array(hc.data.data, dtype=complex)
+	try:
+		n = list(abs(h)).index(0)
+	except ValueError:
+		n = len(h)
+	return n * hp.deltaT
+
+
+GMsun = 1.32712442099e20 # heliocentric gravitational constant, m^2 s^-2
+G = 6.67384e-11 # Newtonian constant of gravitation, m^3 kg^-1 s^-2
+c = 299792458 # speed of light in vacuum (exact), m s^-1
+gsun = GMsun / G # solar mass, kg
+
+def velocity(f, M):
+	"""
+	Finds the orbital "velocity" corresponding to a gravitational
+	wave frequency.
+	"""
+	return (pi * G * M * f)**(1.0/3.0) / c
+
+def chirptime(f, M, nu, chi):
+	"""
+	Over-estimates the chirp time in seconds from a certain frequency.
+	Uses 2 pN chirp time from some starting frequency f in Hz
+	where all negative contributions are dropped.
+	"""
+	v = velocity(f, M)
+	tchirp = 1.0
+	tchirp += ((743.0/252.0) + (11.0/3.0)*nu) * v**2
+	tchirp += (226.0/15.0) * chi * v**3
+	tchirp += ((3058673.0/508032.0) + (5429.0/504.0)*nu + (617.0/72.0)*nu**2) * v**4
+	tchirp *= (5.0/(256.0*nu)) * (G*M/c**3) / v**8
+	return tchirp
+
+def ringf(M, j):
+	"""
+	Computes the approximate ringdown frequency in Hz.
+	Here j is the reduced Kerr spin parameter, j = c^2 a / G M.
+	"""
+	return (1.5251 - 1.1568 * (1 - j)**0.1292) * (c**3 / (2.0 * pi * G * M))
+
+def ringtime(M, j):
+	"""
+	Computes the black hole ringdown time in seconds.
+	Here j is the reduced Kerr spin parameter, j = c^2 a / G M.
+	"""
+	efolds = 11
+	# these are approximate expressions...
+	f = ringf(M, j)
+	Q = 0.700 + 1.4187 * (1 - j)**-0.4990
+	T = Q / (pi * f)
+	return efolds * T
+
+def mergetime(M):
+	"""
+	Over-estimates the time from ISCO to merger in seconds.
+	Assumes one last orbit at the maximum ISCO radius.
+	"""
+	# The maximum ISCO is for orbits about a Kerr hole with
+	# maximal counter rotation.  This corresponds to a radius
+	# of 9GM/c^2 and a orbital speed of ~ c/3.  Assume the plunge
+	# and merger takes one orbit from this point.
+	norbits = 1.0
+	v = c / 3.0
+	r = 9.0 * G * M / c**2
+	return norbits * (2.0 * pi * r / v)
+
+def overestimate_j_from_chi(chi):
+	"""
+	Overestimate final black hole spin
+	"""
+	return min(max(lalsim.SimIMREOBFinalMassSpin(1, 1, [0, 0, chi], [0, 0, chi], lalsim.GetApproximantFromString('SEOBNRv2'))[2], abs(chi)), 0.998)
+
+def imr_time(f, m1, m2, j1, j2, f_max = None):
+	"""
+	Returns an overestimate of the inspiral time and the
+	merger-ringdown time, both in seconds.  Here, m1 and m2
+	are the component masses in kg, j1 and j2 are the dimensionless
+	spin parameters of the components.
+	"""
+
+	if f_max is not None and f_max < f:
+		raise ValueError("f_max must either be None or greater than f")
+
+	# compute total mass and symmetric mass ratio
+	M = m1 + m2
+	nu = m1 * m2 / M**2
+
+	# compute spin parameters
+	#chi_s = 0.5 * (j1 + j2)
+	#chi_a = 0.5 * (j1 - j2)
+	#chi = (1.0 - (76.0/113.0)) * chi_s + ((m1 - m2) / M) * chi_a
+	# overestimate chi:
+	chi = max(j1, j2)
+
+	j = overestimate_j_from_chi(chi)
+
+	if f > ringf(M, j):
+		warnings.warn("f is greater than the ringdown frequency. This might not be what you intend to compute")
+
+	if f_max is None or f_max > ringf(M, j):
+		return chirptime(f, M, nu, chi) + mergetime(M) + ringtime(M, j)
+	else:
+		# Always be conservative and allow a merger time to be added to
+		# the end in case your frequency is above the last stable orbit
+		# but below the ringdown.
+		return imr_time(f, m1, m2, j1, j2) - imr_time(f_max, m1, m2, j1, j2)