diff --git a/gstlal-inspiral/python/stats/inspiral_lr.py b/gstlal-inspiral/python/stats/inspiral_lr.py index ee92bd9d0512d0a7a7fff0e868081d8e36eca9a4..58f9ceabd7c0acaae06125aa7abed160e4a7b342 100644 --- a/gstlal-inspiral/python/stats/inspiral_lr.py +++ b/gstlal-inspiral/python/stats/inspiral_lr.py @@ -563,15 +563,15 @@ class DatalessLnSignalDensity(LnSignalDensity): # evaluate P(t) \propto number of templates lnP = math.log(len(self.template_ids)) - # Add P(instruments | horizon distances) - # Assume all instruments have 100 Mpc - # horizon distance - horizons = dict.fromkeys(segments, 100.) - + # Add P(instruments | horizon distances). assume all + # instruments have TYPICAL_HORIZON_DISTANCE horizon + # distance + horizons = dict.fromkeys(segments, TYPICAL_HORIZON_DISTANCE) try: lnP += math.log(self.InspiralExtrinsics.p_of_instruments_given_horizons(snrs.keys(), horizons)) except ValueError: - # The code raises a value error when a needed horizon distance is zero + # raises ValueError when a needed horizon distance + # is zero return NegInf # Evaluate dt, dphi, snr probability