From af4047b6c4f030ee1ce8d8d99cb571a8fec430c7 Mon Sep 17 00:00:00 2001 From: Chad Hanna <chad.hanna@ligo.org> Date: Mon, 29 Jul 2019 10:39:49 -0400 Subject: [PATCH] inspiral_lr.py: tighten default snr / chisq distribution for signals --- gstlal-inspiral/python/stats/inspiral_lr.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gstlal-inspiral/python/stats/inspiral_lr.py b/gstlal-inspiral/python/stats/inspiral_lr.py index 5b23760bf0..ce46e2aaeb 100644 --- a/gstlal-inspiral/python/stats/inspiral_lr.py +++ b/gstlal-inspiral/python/stats/inspiral_lr.py @@ -417,7 +417,7 @@ class LnSignalDensity(LnLRDensity): vtdict = self.horizon_history.functional_integral_dict(window.shift(float(gps)), lambda D: D**3.) return dict((instrument, (vt / t)**(1./3.)) for instrument, vt in vtdict.items()) - def add_signal_model(self, prefactors_range = (0.01, 0.03), df = 100, inv_snr_pow = 4.): + def add_signal_model(self, prefactors_range = (0.001, 0.01), df = 400, inv_snr_pow = 4.): # normalize to 10 *mi*llion signals. this count makes the # density estimation code choose a suitable kernel size inspiral_extrinsics.NumeratorSNRCHIPDF.add_signal_model(self.densities["snr_chi"], 10000000., prefactors_range, df, inv_snr_pow = inv_snr_pow, snr_min = self.snr_min) -- GitLab