diff --git a/gstlal-inspiral/python/far.py b/gstlal-inspiral/python/far.py index ba0cba945e8540d856e633de363d58f55b9375ed..d405ed970ea2429e8082ae3e8ecd89633b2b0546 100644 --- a/gstlal-inspiral/python/far.py +++ b/gstlal-inspiral/python/far.py @@ -597,9 +597,12 @@ class ThincaCoincParamsDistributions(snglcoinc.CoincParamsDistributions): # # then they are considered to be equal for the purpose of recording # horizon distance history, generating joint SNR PDFs, and so on. - # # FIXME: is this choice of distance quantization appropriate? - log_distance_tolerance = math.log(1.5) + @staticmethod + def quantize_horizon_distances(horizon_distances, log_distance_tolerance = math.log(1.5)): + horizon_distance_norm = max(horizon_distances.values()) + assert horizon_distance_norm != 0. + return dict((instrument, (0. if horizon_distance == 0. else math.exp(round(math.log(horizon_distance / horizon_distance_norm) / log_distance_tolerance) * log_distance_tolerance))) for instrument, horizon_distance in horizon_distances.items()) # binnings (filter funcs look-up initialized in .__init__() binnings = { @@ -661,15 +664,14 @@ class ThincaCoincParamsDistributions(snglcoinc.CoincParamsDistributions): # second element is frozen set of (instrument, horizon # distance) pairs for all instruments in the network. # horizon distances are normalized to fractions of the - # largest among them and then are quantized to integer - # powers of exp(log_distance_tolerance) + # largest among them and then the fractions aquantized to + # integer powers of a common factor # # FIXME: if horizon distance discrepancy is too large, # consider a fast-path that just returns an all-0 array # - horizon_distance_norm = max(horizon_distances.values()) - key = frozenset(instruments), frozenset((instrument, math.exp(round(math.log(horizon_distance / horizon_distance_norm) / self.log_distance_tolerance) * self.log_distance_tolerance)) for instrument, horizon_distance in horizon_distances.items()) + key = frozenset(instruments), frozenset(self.quantize_horizon_distances(horizon_distances).items()) # # retrieve cached PDF, or build new one