diff --git a/gstlal-inspiral/bin/gstlal_inspiral_mass_model b/gstlal-inspiral/bin/gstlal_inspiral_mass_model index a792cf22e1688779f9a68d5e3e4f986216dbcd36..3ddd3f0c9d0c23d624a42af78ab7cf0292570679 100755 --- a/gstlal-inspiral/bin/gstlal_inspiral_mass_model +++ b/gstlal-inspiral/bin/gstlal_inspiral_mass_model @@ -106,7 +106,9 @@ for row in sngl_inspiral_table: bns_rate = 916. bbh_rate = 56. other_rate = 20. # made up - ids[row.template_id] = (bns_rate * bnsprob + bbh_rate * bbhprob + other_rate * otherprob) / massBA[(mchirp,)] / (bns_rate + bbh_rate + other_rate) + # FIXME if the noise is ever normalized over mass then we would need the following, but it isn't + #ids[row.template_id] = (bns_rate * bnsprob + bbh_rate * bbhprob + other_rate * otherprob) / massBA[(mchirp,)] / (bns_rate + bbh_rate + other_rate) + ids[row.template_id] = (bns_rate * bnsprob + bbh_rate * bbhprob + other_rate * otherprob) / (bns_rate + bbh_rate + other_rate) mchirps.append(mchirp) probs.append(ids[row.template_id]) else: @@ -116,6 +118,7 @@ coefficients = numpy.zeros((1, 1, max(ids)+1), dtype=float) for tid in ids: coefficients[0,0,tid] = numpy.log(ids[tid]) +#print coefficients.min() #import matplotlib #matplotlib.use('agg') #from matplotlib import pyplot