diff --git a/gstlal-calibration/bin/gstlal_compute_strain b/gstlal-calibration/bin/gstlal_compute_strain index 64003f6b0fa55eba3ed7c09695e21d967a15b594..ba2ad9ed352ef06ecfd30ba8b37aebd805f2707f 100755 --- a/gstlal-calibration/bin/gstlal_compute_strain +++ b/gstlal-calibration/bin/gstlal_compute_strain @@ -455,7 +455,7 @@ try: roaming_pcal_line_freq = float(filters["roaming_pcal_line_freq"]) pcal_corr_at_roaming_line_real = float(filters["roaming_pcal_corr_re"]) pcal_corr_at_roaming_line_imag = float(filters["roaming_pcal_corr_im"]) - if roaming_pcal_line_freq > 0.0 and options.remove_callines: + if roaming_pcal_line_freq > 0.0 and remove_cal_lines: pcal_line_removal_dict["pcal5"] = [roaming_pcal_line_freq, pcal_corr_at_roaming_line_real, pcal_corr_at_roaming_line_imag, None] except: roaming_pcal_line_freq = 0.0 @@ -627,8 +627,8 @@ if remove_power_lines: # If we are using witness channels to clean h(t), add those to the channel list if ChannelNames["witnesschannellist"] != "None": - witness_channel_list = ChannelNames["witnesschannellist"].split(',') - witness_notch_frequencies = DataCleaningConfigurations["witnessnotchfrequencies"].split(';') + witness_channel_list = ChannelNames["witnesschannellist"].split(';') + witness_notch_frequencies = DataCleaningConfigs["witnessnotchfrequencies"].split(';') witness_rates = SampleRates["witnesschannelsr"].split(';') if len(witness_channel_list) != len(witness_notch_frequencies) or len(witness_channel_list) != len(witness_rates): raise ValueError("WitnessChannelList, WitnessChannelSR, and WitnessNotchFrequencies must all be the same length, i.e, they must all have the same number of semicolons (;)") @@ -1190,7 +1190,7 @@ if any(act_highpass): if apply_complex_kappatst: # Filter the TST chain with an adaptive TST actuation filter that includes a linear-phase correction from kappa_tst - tst = pipeparts.mkgeneric(pipeline, tst, "lal_tdwhiten", kernel = tstfilt[::-1], latency = tstdelay, taper_length = options.actuation_filter_taper_length) + tst = pipeparts.mkgeneric(pipeline, tst, "lal_tdwhiten", kernel = tstfilt[::-1], latency = tstdelay, taper_length = actuation_filter_taper_length) # Hook up the adaptive filter from lal_adaptivefirfilt to lal_tdwhiten so that the filter gets updated adaptive_tst_filter.connect("notify::adaptive-filter", calibration_parts.update_filter, tst, "adaptive-filter", "kernel") @@ -1224,7 +1224,7 @@ if any(act_highpass): if apply_complex_kappapu: # Filter the PUM/UIM chain with an adaptive PUM/UIM actuation filter that includes a linear-phase correction from kappa_pu - pumuim = pipeparts.mkgeneric(pipeline, pumuim, "lal_tdwhiten", kernel = pumuimfilt[::-1], latency = pumuimdelay, taper_length = options.actuation_filter_taper_length) + pumuim = pipeparts.mkgeneric(pipeline, pumuim, "lal_tdwhiten", kernel = pumuimfilt[::-1], latency = pumuimdelay, taper_length = actuation_filter_taper_length) # Hook up the adaptive filter from lal_adaptivefirfilt to lal_tdwhiten so that the filter gets updated adaptive_pumuim_filter.connect("notify::adaptive-filter", calibration_parts.update_filter, pumuim, "adaptive-filter", "kernel") @@ -1236,7 +1236,6 @@ pumuim_filter_settle_time += float(len(pumuimfilt)-pumuimdelay)/pumuimchainsr pumuim_filter_latency += float(pumuimdelay)/pumuimchainsr # apply kappa_pu if we haven't already -print apply_kappapu if apply_kappapu and not apply_complex_kappapu: # Only apply the real part of \kappa_pu as a correction to A_pu kpu_for_pu = calibration_parts.mkresample(pipeline, smooth_kpuRtee, 3, False, pumuimchainsr) @@ -1826,7 +1825,7 @@ if witness_channel_list is not None: # Remove initial data from computation of transfer functions and wait until the filters and kappas settle witness_chop_time = filter_settle_time + (1.0 - filter_latency) * (demodulation_filter_time + median_smoothing_time + factors_averaging_time) # In high latency, make the witnesses wait to be filtered until new filters are ready - witness_wait_time = (filter_settle_time + options.demodulation_filter_time + median_smoothing_time + factors_averaging_time + witness_channel_fft_time / 2.0 * (num_witness_ffts + 1.0)) if filter_latency else 0.0 + witness_wait_time = (filter_settle_time + demodulation_filter_time + median_smoothing_time + factors_averaging_time + witness_channel_fft_time / 2.0 * (num_witness_ffts + 1.0)) if filter_latency else 0.0 # How much does the "chop_time" need to increase per iteration of cleaning? witness_chop_increment = witness_filter_taper_time + (witness_channel_fft_time / 2.0 * (num_witness_ffts + 1.0) if not filter_latency else 0.0) # How much does the "wait_time" need to increase per iteration of cleaning? @@ -1864,7 +1863,7 @@ if witness_channel_list is not None: if remove_cal_lines or remove_power_lines or witness_channel_list is not None: clean_strain = pipeparts.mkprogressreport(pipeline, clean_strain, "progress_hoft_cleaned_%s" % instrument) clean_straintagstr = "units=strain,channel-name=%sCALIB_STRAIN_CLEAN%s,instrument=%s" % (chan_prefix, chan_suffix, instrument) - if not options.no_dq_vector: + if compute_calib_statevector: clean_straintee = pipeparts.mktee(pipeline, clean_strain) clean_strain = pipeparts.mktaginject(pipeline, clean_straintee, clean_straintagstr) else: @@ -1888,7 +1887,7 @@ if compute_calib_statevector and (remove_cal_lines or remove_power_lines or witn clean_hoft_ok_lowfreq = pipeparts.mkcapsfilter(pipeline, clean_hoft_ok_lowfreq, calibstate_caps) # Compute the RMS of the uncleaned strain in a mid-frequency range to test subtraction of noise and/or the ~300 Hz pcal line - strain_rms_midfreq = calibration_parts.compute_rms(pipeline, straintee, mid_rms_rate, cleaning_check_rms_time, f_min = cleaning_check_range_mid_min, f_max = options.cleaning_check_range_mid_max, filter_latency = filter_latency, rate_out = calibstate_sr, td = td) + strain_rms_midfreq = calibration_parts.compute_rms(pipeline, straintee, mid_rms_rate, cleaning_check_rms_time, f_min = cleaning_check_range_mid_min, f_max = cleaning_check_range_mid_max, filter_latency = filter_latency, rate_out = calibstate_sr, td = td) # Compute the RMS of the cleaned strain in a mid-frequency range clean_strain_rms_midfreq = calibration_parts.compute_rms(pipeline, clean_straintee, mid_rms_rate, cleaning_check_rms_time, f_min = cleaning_check_range_mid_min, f_max = cleaning_check_range_mid_max, filter_latency = filter_latency, rate_out = calibstate_sr, td = td) # Require that ratio RMS(strain) / RMS(clean_strain) > 1.0