diff --git a/gstlal-inspiral/bin/gstlal_inspiral_lvalert_pastro_rate_posterior b/gstlal-inspiral/bin/gstlal_inspiral_lvalert_pastro_rate_posterior index ccabce9243c6e9d099c34eb663271601fe49c715..012d18e1800e860b8695e8b8ce3f0b30ddc6df26 100755 --- a/gstlal-inspiral/bin/gstlal_inspiral_lvalert_pastro_rate_posterior +++ b/gstlal-inspiral/bin/gstlal_inspiral_lvalert_pastro_rate_posterior @@ -212,6 +212,7 @@ def hpd_credible_interval(alpha, rv): else: a = scipy.optimize.brentq(lambda x: rv.pdf(x) - p, rv.a, rv.mode()) b = scipy.optimize.brentq(lambda x: rv.pdf(x) - p, rv.mode(), rv.b) + print "credible interval computed for %f [%f, %f]" %(alpha, a, b) return a, b def false_alarm_probability(event_f_over_b, rv): @@ -300,9 +301,9 @@ def get_ln_f_over_b(rankingstatpdf, ln_likelihood_ratios): if any(math.isnan(ln_lr) for ln_lr in ln_likelihood_ratios): raise ValueError("NaN log likelihood ratio encountered") - f = rankingstatpdf.signal_likelihood_pdfs[None] - b = rankingstatpdf.background_likelihood_pdfs[None] - ln_f_over_b = numpy.array([numpy.log(f[ln_lr,])-numpy.log(b[ln_lr,]) for ln_lr in ln_likelihood_ratios]) + f = rankingstatpdf.signal_lr_lnpdf + b = rankingstatpdf.noise_lr_lnpdf + ln_f_over_b = numpy.array([f[ln_lr,]-b[ln_lr,] for ln_lr in ln_likelihood_ratios]) if numpy.isnan(numpy.exp(ln_f_over_b)).any(): raise ValueError("NaN encountered in ranking statistic PDF ratios") if numpy.isinf(numpy.exp(ln_f_over_b)).any():