diff --git a/gstlal-inspiral/python/stats/inspiral_extrinsics.py b/gstlal-inspiral/python/stats/inspiral_extrinsics.py index 09e6c5775d6bad6eb333002332012f89bd8e70af..cd720ad2690673bd8e11337b7022cae1ef8d8f17 100644 --- a/gstlal-inspiral/python/stats/inspiral_extrinsics.py +++ b/gstlal-inspiral/python/stats/inspiral_extrinsics.py @@ -43,7 +43,6 @@ from scipy import stats from scipy import spatial import sys import h5py -import healpy from glue.ligolw import ligolw from glue.ligolw import lsctables @@ -941,10 +940,10 @@ class NumeratorSNRCHIPDF(rate.BinnedLnPDF): # -class TPhiDeffPDF(object): +class InspiralExtrinsics(object): def __init__(self): DEFAULT_FILENAME = os.path.join(gstlal_config_paths["pkgdatadir"], "inspiral_dtdphi_pdf.h5") - self.IE = InspiralExtrinsics.from_hdf5(DEFAULT_FILENAME) + self.TimePhaseSNR = TimePhaseSNR.from_hdf5(DEFAULT_FILENAME) def chunker(seq, size): @@ -968,7 +967,7 @@ def margprob(Dmat): return out -class InspiralExtrinsics(object): +class TimePhaseSNR(object): # NOTE to save a couple hundred megs of ram we do not # include kagra for now... @@ -985,7 +984,7 @@ class InspiralExtrinsics(object): self.margsky = margsky if self.tree_data is None: - time, phase, deff = InspiralExtrinsics.tile() + time, phase, deff = TimePhaseSNR.tile() self.tree_data = self.dtdphideffpoints(time, phase, deff, self.slices) # produce KD trees for all the combinations. NOTE we slice @@ -999,7 +998,7 @@ class InspiralExtrinsics(object): self.KDTree[combo] = spatial.cKDTree(self.tree_data[:,slcs]) # NOTE: This is super slow we have a premarginalized h5 file in - # the tree, see the helper class TPhiDeffPDF + # the tree, see the helper class InspiralExtrinsics if self.margsky is None: self.margsky = {} for combo in self.combos: @@ -1040,7 +1039,7 @@ class InspiralExtrinsics(object): for combo in dgrp["marg"]: key = tuple(combo.split(",")) margsky[key] = numpy.array(dgrp["marg"][combo]) - return InspiralExtrinsics(tree_data = tree_data, margsky = margsky) + return TimePhaseSNR(tree_data = tree_data, margsky = margsky) @property def combos(self): @@ -1102,6 +1101,10 @@ class InspiralExtrinsics(object): @classmethod def tile(cls, NSIDE = 16, NANGLE = 33): + # FIXME should be put at top, but do we require healpy? It + # isn't necessary for running at the moment since cached + # versions of this will be used. + import healpy healpix_idxs = numpy.arange(healpy.nside2npix(NSIDE)) # We are concerned with a shell on the sky at some fiducial # time (which simply fixes Earth as a natural coordinate @@ -1133,7 +1136,8 @@ class InspiralExtrinsics(object): print "\n...done" return time, phase, deff - def __call__(self, time, phase, deff): + def __call__(self, time, phase, snr, horizon): + deff = dict((k, horizon[k] / snr[k] * 8.0) for k in snr) slices = dict((pair, [3*n,3*n+1,3*n+2]) for n,pair in enumerate(self.instrument_pairs(time))) point = self.dtdphideffpoints(time, phase, deff, slices) combo = tuple(sorted(time)) @@ -1142,7 +1146,11 @@ class InspiralExtrinsics(object): nearestpoint = self.tree_data[nearestix, treedataslices] D = (point - nearestpoint)[0] D2 = numpy.dot(D,D) - return numpy.exp(-D2 / 2.) * self.margsky[combo][nearestix] / self.norm + # FIXME 4. / (sum(s**2 for s in S.values())**.5)**4 is the term + # that goes like rho^-4 with a somewhat arbitrary + # normilization. Could use the network snr minimum to + # normalize it properly + return numpy.exp(-D2 / 2.) * self.margsky[combo][nearestix] / self.norm * 4. / (sum(s**2 for s in snr.values())**.5)**4 class p_of_instruments_given_horizons(object): @@ -1157,7 +1165,7 @@ class p_of_instruments_given_horizons(object): if histograms is not None: self.histograms = histograms else: - combos = inspiral_extrinsics.InspiralExtrinsics.instrument_combos(self.instruments, min_instruments = 1) + combos = TimePhaseSNR.instrument_combos(self.instruments, min_instruments = 1) self.histograms = {} bins = [] for i in range(len(self.instruments) - 1): @@ -1166,7 +1174,7 @@ class p_of_instruments_given_horizons(object): print combo self.histograms[combo] = rate.BinnedArray(rate.NDBins(bins)) - _, _, deff = inspiral_extrinsics.InspiralExtrinsics.tile(NSIDE = 8, NANGLE = 17) + _, _, deff = TimePhaseSNR.tile(NSIDE = 8, NANGLE = 17) alldeff = [] for v in deff.values(): alldeff.extend(v) @@ -1246,7 +1254,7 @@ class p_of_instruments_given_horizons(object): bins = [] for i in range(len(instruments) - 1): bins.append(rate.LogarithmicBins(hmin, hmax, nbins)) - for combo in inspiral_extrinsics.InspiralExtrinsics.instrument_combos(instruments, min_instruments = 1): + for combo in TimePhaseSNR.instrument_combos(instruments, min_instruments = 1): histograms[combo] = rate.BinnedArray(rate.NDBins(bins)) histograms[combo].array[:] = numpy.array(grp[",".join(combo)])[:] f.close()