diff --git a/gstlal-inspiral/python/stats/inspiral_extrinsics.py b/gstlal-inspiral/python/stats/inspiral_extrinsics.py index f59e145e33f14982fed7c3c48bbfe944c8cd5880..6a4bcbc1c14cf4799bcb5bf7a8d646f563ba7a20 100644 --- a/gstlal-inspiral/python/stats/inspiral_extrinsics.py +++ b/gstlal-inspiral/python/stats/inspiral_extrinsics.py @@ -942,9 +942,9 @@ def margprob(Dmat): out = [] for D in Dmat: D = D[numpy.isfinite(D)] - step = max(int(len(D) / 32.), 1) + step = max(int(len(D) / 2048.), 1) D = D[::step] - if len(D) == 33: + if len(D) == 2049: out.append(step * scipy.integrate.romb(numpy.exp(-D**2/2.))) else: out.append(step * scipy.integrate.simps(numpy.exp(-D**2/2.))) @@ -1075,7 +1075,7 @@ class TimePhaseSNR(object): self.margsky = margsky if self.tree_data is None: - time, phase, deff = TimePhaseSNR.tile() + time, phase, deff = TimePhaseSNR.tile(verbose = verbose) self.tree_data = self.dtdphideffpoints(time, phase, deff, self.slices) # produce KD trees for all the combinations. NOTE we slice @@ -1110,7 +1110,7 @@ class TimePhaseSNR(object): # analysis. This will use 8GB of RAM and keep # a box pretty busy. for points in chunker(self.tree_data[:,slcs], 1000): - Dmat = self.KDTree[combo].query(points, k=num_points, distance_upper_bound = 3.5, n_jobs=-1)[0] + Dmat = self.KDTree[combo].query(points, k=num_points, distance_upper_bound = 20, n_jobs=-1)[0] marg.extend(margprob(Dmat)) self.margsky[combo] = numpy.array(marg, dtype="float32")